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PREFACE

In recent years there has been a marked tendency in college mathe-

matics programs toward an earlier and more intensive use of the methods

of calculus. This change is made in response to the fact that college

students are faced with more and more applications of mathematics in

engineering, physics, chemistry, and other fields. There is a pressing need

for a working knowledge of calculus as early as possible. Consequently

many teachers are making a close scrutiny of the traditional topics of

freshman mathematics. This is done in an effort to determine the ma-

terial and emphasis which will lay the best foundation for the study of

calculus.

In the light of present needs, this analytic geometry is planned primarily

as a preparation for calculus. With this end in mind, a few of the usual

topics are not included and certain others are treated with brevity. The
omitted material, consisting of an appreciable amount of the geometry of

circles and a number of minor items, is not essential to the study of calculus.

The time saved by cutting traditional material provides opportunity for

emphasizing the necessary basic principles and for introducing new con-

cepts which point more directly toward the calculus.

Students come to analytic geometry with a rather limited experience in

graphing. Principally they have dealt with the graphs of linear and cer-

tain quadratic equations. Hence it seenis well to let this be the starting

point. Accordingly, the first chapter deals with functions and graphs.

In order that this part shall go beyond a review of old material, the ideas

of intercepts, symmetry, excluded values, and asymptotes are considered.

Most students in algebra are told (without proof) that the graph of a

linear equation in two variables is a straight line. Taking cognizance of

this situation, it appears logical to prove directly from the equation that

the graph of A x + By + C = is a straight line. Having established this

fact, the equation can be altered in a straightforward procedure to yield

various special forms. The normal form, however, receives only incidental

mention.

The transformation of coordinates concept is introduced preceding a

systematic study of conies. Taken early or late in the course, this is a

difficult idea for the students. By its early use, however, the students

may see that a general second degree equation can be reduced to a simple

form. Thus there is established a logical basis for investigating conies by
means of the simple equations.

Although employing simple forms, the second degree equation is intro-

duced at variance with the traditional procedure. As with the linear
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equation, it seems logical to build on the previous instruction given to the

students. In algebra they have drawn graphs of conies. The words

circle, parabola, ellipse, and hyperbola are familiar to many of them. In

fact, some students can classify the type of conic if the equation has no xy
term. Tying in with this state of preparation, the conic may jiaturally

and logically be defined analytically rather than as the locus of a moving

point. The equations then lend themselves to the establishment of various

geometric properties.

In harmony with the idea of laying a foundation for calculus, a chapter

is given to the use of the derivatives of polynomials and of negative integral

powers of a variable. Applications are made in constructing graphs, and

some maxima and minima problems of a practical nature are considered.

The chapter on curve fitting applies the method of least squares in

fitting a straight line to empirical data.

Many students come to calculus with little understanding of polar coor-

dinates, therefore polar coordinates are discussed quite fully, and there is

an abundance of problems.

The elements of solid analytic geometry are treated in two concluding

chapters. The first of these takes up quadric surfaces and the second deals

with planes and lines. This order is chosen because a class which takes

only one of the two chapters should preferably study the space illustrations

of second degree equations. Vectors are introduced and applied in the

study of planes and lines. This study is facilitated, of course, by the use

of vectors, and a further advantage is gained by giving the students a

brief encounter with this valuable concept.

The six numerical tables provided in the Appendix, though brief, are

fully adequate to meet the needs which arise in the problems.

Answers to odd-numbered problems are bound in the book. All of the

answers are available in pamphlet form to teachers.

The book is written for a course of three semester hours. While an

exceptionally well prepared group of students will be able to cover the

entire book in a course of this length, there will be excess material for

many classes. It is suggested that omissions may be made from Chapters
7 and 8, Sections 6-7, 9-8, 12-7, and 12-8.

The author is indebted to Professor B. H. Gere, Hamilton College,

Professor Morris Kline, New York University, and Professor Eric Reissner,

Massachusetts Institute of Technology. Each of these men read the

manuscript at various stages of its development and made numerous

helpful suggestions for improvement.

G. F.

January, 1954
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CHAPTER 1

FUNCTIONS AND GRAPHS

1-1 Introduction. Previous to the seventeenth century, algebra and

geometry were largely distinct mathematical sciences, each having been

developed independently of the other. In 1637, however, a French mathe-

matician and philosopher, Ren6 Descartes, published his La Gtomttrie,

which introduced a device for unifying these two branches of mathematics.

The basic feature of this new process, now called analytic geometry, is the

use of a coordinate system. By means of coordinate systems algebraic

methods can be applied powerfully in the study of geometry, and perhaps
of still greater importance is the advantage gained by algebra through the

pictorial representation of algebraic equations. Since the time of Descartes

analytic geometry has had a tremendous impact on the development of

mathematical knowledge. And today analytic methods enter vitally

into the diverse theoretical and practical applications of mathematics.

1-2 Rectangular coordinates. We shall describe the rectangular co-

ordinate system which the student has previously met in elementary

algebra and trigonometry. This is the most common coordinate system
and is sometimes called the rectangular Cartesian system in honor of

Descartes.

Draw two perpendicular lines meeting at (Fig. 1-1). The point

is called the origin and the lines are called the axes, OX the x-axis and OY
the ?/-axis. The x-axis is usually drawn horizontally and is frequently

referred to as the horizontal axis, and the //-axis is called the vertical axis.

The axes divide their plane into four parts called quadrants. The quad-
rants are numbered I, II, III, and IV, as in Fig. 1-1. Next select any
convenient unit of length and lay off distances from the origin along the

axes. The distances to the right along the x-axis are defined as positive

and those to the left are taken as negative. Similarly, distances upward

along the y-axis are defined as positive and those downward are called

negative.

The position of any point P in the plane may be definitely indicated by

giving its distances from the axes. The distance from the y-axis to P is

called the abscissa of the point, and the distance from the x-axis is called

the ordinate of the point. The abscissa is positive if the point is to the

right of the */-axis, and negative if the point is to the left of the g/-axis.

The ordinate is positive if the point is above the x-axis, and negative if the

point is below the x-axis. The abscissa of a point on the y-axis is zero

and the ordinate of a point on the x-axis is zero. The two distances,
1
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abscissa and ordinate, are called the coordinates of the point. The coor-

dinates are indicated by writing the abscissa first and enclosing both

numbers by parentheses. For example, P( 2,3), or just (2,3), stands

for the point whose abscissa is 2 and whose ordinate is 3.

To plot a point of given coordinates means to measure the proper dis-

tances from the axes and to mark the point thus determined. Points

can be more readily and accurately plotted by the use of coordinate paper,

that is, paper ruled off into small squares. It is easy to plot a point whose

coordinates are distances from the axes to an intersection of two rulings.

For other coordinate values the point is not at a corner of one of the small

squares and its position within or on the side of the square must be esti-

mated. If a coordinate is an irrational number, a decimal approximation
is used in plotting the point.

We assume that to any pair of real numbers (coordinates) there corre-

sponds one definite point of the coordinate plane. Conversely, we assume

that to each point of the plane there corresponds one definite pair of coor-

dinates. This relation of points in a plane and pairs of real numbers is

called a one-to-one correspondence.

EXERCISE 1-1

1. Plot the points whose coordinates are (4,3), (4, 3), (4,3), (4, 3),

(5,0), (0, -2), and (0,0).

2. Plot the points whose coordinates are (J,), (if), (V,-*), ftS), (^2,1),

(\/3,V3), (V5,-\/I6). (See Table I in the Appendix to obtain square roots.)
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3. Draw the triangles whose vertices are (a) (2,-l), (0,4), (5,1); (b) (2, -3),

(4,4), (-2,3).

4. In which quadrant does a point lie if (a) both coordinates are positive,

(b) both are negative?

5. Where may a point lie if (a) its ordinate is zero, (b) its abscissa is zero?

6. What points have their abscissas equal to 2? For what points are the

ordinates equal to 2?

7. Where may a point be if (a) its abscissa is equal to its ordinate, (b) its

abscissa is equal to the negative of its ordinate?

8. Draw the right triangle and find the lengths of the sides and hypotenuse
if the coordinates of the vertices are (a) (-1,1), (3,1), (3,-2); (b) (-5,3), (7,3),

(7,-2).

9. Two vertices of an equilateral triangle are (3,0) and (3,0). Find the

coordinates of the third vertex and the area of the triangle.

10. The points 4(0,0), B(5,l), and C(l,3) are vertices of a parallelogram. Find

the coordinates of the fourth vertex (a) if EC is a diagonal, (b) if AB is a diagonal,

(c) if AC is a diagonal.

1-3 Variables and functions. Xumbers, and letters standing for num-

bers, are used in mathematics. The numbers, of course, are fixed in

value. A letter may stand for a fixed number which is unknown or un-

specified. The numbers and letters standing for fixed quantities are

called constants. Letters are also used as symbols which may assume

different numerical values. When employed for this purpose, the letter

is said to be a variable.

For example, we may use the formula c = 2wr to find the circumference

of any circle of known radius. The letters c and r are variables; they

play a different role from the fixed numbers 2 and IT. A quadratic expres-

sion in the variable x may be represented by

ax2 + bx + c,

where we regard a, 6, and c as unspecified constants which assume fixed

values in a particular problem or situation.

Variable quantities are often related in such a way that one variable

depends on another for its values. The relationship of variables is a

basic concept in mathematics, and we shall be concerned with this idea

throughout the book.

DEFINITION. // a definite value or set of values of a variable y is deter-

mined when a variable x takes any one of its values, then y is said to be a

function of x.

Frequently the relation between two variables is expressed by an

equation. The equation c = 2irr expresses the relation between the cir-

cumference and radius of a circle. When any positive value is assigned
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to r, the value of c is determined. Hence c is a function of r. The radius

is also a function of the circumference, since r is determined when c is

given a value.

Usually we assign values to one variable and find the corresponding
values of the other. The variable to which we assign values is called the

independent variable, and the other, the dependent variable.

The equation x2 -
y + 2 - expresses a relation between the variables

x and y. Either may be regarded as the independent variable. Solving
for y, the equation becomes y x2 + 2. In this form we consider x the

independent variable. When expressed in the form x = Vy 2, we
consider y the independent variable. We notice from the equation

y = y? + 2 that y takes only one value for each value given to x. The
variable y therefore is said to be a single-valued function of x. On the

other hand, taking y as the independent variable, we see that for each

value given to y there are two corresponding values of x. Hence x is a

double-valued function of y.

Restrictions are usually placed on the values which a variable may
take. We shall consider variables which have only real values. This

requirement means that the independent variable can be assigned only
those real values for which the corresponding values of the dependent
variable are also real. The totality of values which a variable may take

is called the range of the variable. In the equation c 2*r, giving the

circumference of a circle as a function of the radius, r and c take only

positive values. Hence the range for each variable consists of all positive

numbers. The equation

z-2

expresses y as a function of x. The permissible values of x are those

from 3 to 3 with the exception of 2. The value 2 would make the

denominator zero, and must be excluded because division by zero is not

defined. This range of x may be written symbolically as

-3 < x < 2, 2 < x < 3.

1-4 Useful notation for functions. Suppose that y - x2 - 3x + 5. To
indicate that y is a function of x, we write the symbol y(x). Using this

notation, the equation is written as

y(x) = s2 - 3z + 5.

The symbol y(x) is read y function of x, or, more simply, y of x. In a

problem where there are different functions of x we could designate them

by different letters such as f(x), g(x), and h(x). Letters other than x, of

course, could stand for the independent variable.



1-5] GRAPH OF AN EQUATION

If y(x) stands for a function of x, then y(2) means the value of the

function, or t/, when x is given the value of 2. Thus if

then
y(x) z2 - 3x + 5,

y(2) - 22 -
3(2) + 5

(-l)-(-l)i-3(-l)
y(s)

= s2 - 3s + 5.

3,

EXERCISE 1-2

1. (Jive the range of x, if x and i/ are to have only real values:

(a)
(x-2)(x

(b)
x -4

Solve the equations in problems 2 and 3 for each variable in terms of the other.

Give the range of each variable and tell if each is a single-valued or double-valued

function of the other.

2. (a) x' + 2/
2 = 9; (b) x1 + 2y* = 2; (c) y = x3

.

3. (a) y
2 = 4x; (b) xy =

5; (c) x2 -
tf
= 9.

4. If/(x) - x' - 3, find/(2),/(-3),and/(a).

5. If g(x) = x8 x2 + 1, find 0(0), 0( 1), and 0(s).

6. If /(x)
= x3 - 1 and g(x)

= x - 1, find/(x)

7. If h(s) = 2s + 3, find fc(20, h(t + 1), and t

8. If i/(x)
= 2x2 - 3x -f 1, find y(x

-
1).

x

g(x).

9. If F(x) =
^-r^^ find F(2x), F(x - 3), and F (-)x ~f~ 1 \x/

10. If /(x) = 3x4 + 2x2 -
10, show that/(-x) =

/(x).

1-5 Graph of an equation. Consider the equation

y _ x2 - 3X ~ 3.

If values are assigned to x, the corresponding values of y may be com-

puted. Thus, setting x = -2, we find y = 7. Several values of x and

the corresponding values of y are shown in the table. These pairs of values

furnish a picture of the relation of x and y. A better representation is

had, however, by plotting each value of x and the corresponding value of

y as the abscissa and ordinate of a point, and then drawing a smooth curve

through the points thus obtained. This process is called graphing the

equation, and the curve is called the graph or locus of the equation.
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The plotted points (Fig. 1-2) are in the range -2 to 5 of z-values. The

range could be extended, and also any number of intermediate points

could be located. But the points plotted show about where the inter-

mediate points would lie. Hence, we can use the known points to draw

a curve which is reasonably accurate. The exact graph satisfies the fol-

lowing definition.

DEFINITION. The graph of an equation consists of all the points whose

coordinates satisfy the given equation.

1-6 Aids in graphing. The point-by-point method of constructing the

graph of an equation is tedious except for simple equations. The task

can often be lightened, however, by first discovering certain characteris-

tics of the graph as revealed by the equation. We shall now discuss

three ways by which the graphing may be facilitated.

Intercepts. The abscissa of a point where a curve touches or crosses

the x-axis is called an x-intercept. The ordinate of a point where a curve

touches or crosses the i/-axis is called a y-intercept. To find the x-inter-

cepts of the graph of an equation, we set y = and solve for x. Similarly,

the ^-intercepts may be found by setting x = and solving for y. Thus

setting y = in the equation 2x 3y =
6, we find x = 3. The point

(3,0) is on the graph and the z-intercept is 3. Substituting x = 0, the

2/-intercept is found to be 2.

The graphs of some equations have no points in common with an axis;
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FIGURE 1-3

for other equations there may be few or many intercepts. The intercepts

are often easily determined, and are of special significance in many prob-
lems.

SYMMETRY. Two points A and B are said to be symmetric with respect to

a line if the line is the perpendicular bisector of the segment AB. A curve

is symmetric with respect to a line if each of its points is one of a pair of

points symmetric with respect to the line.

At present our interest is mainly in curves which are symmetric with

respect to the coordinate axes. The points (x,y) and (x, y) are sym-
metric with respect to the x-axis. A curve is symmetric with respect to

the x-axis if for each point (x,y) of the curve there is also the point (x,y)
on the curve. Similarly, a curve is symmetric with respect to the y-axis

if for each point (x,y) of the curve there is also the point ( x,y) on the

curve. (See Fig. 1-3.)

Two points A and B are symmetric with respect to a point if is the

mid-point of the line segment AB. A curve is symmetric with respect to

a point if each point of the curve is one of a pair of points symmetric with

respect to 0.

In accordance with this definition, the points (x,y) and ( x, y) are

symmetric with respect to the origin. Further, a curve is symmetric with

respect to the origin if for each point (x,y) of the curve there is also the

corresponding point (x,-y) on the curve.

An equation can be easily tested to determine if its graph is symmetric
with respect to either axis or the origin. Consider, for example, the

equation y
2 = 4x + 6. If y is replaced by t/, the equation is not altered.

This means that if y is given a value and then the negative of that value,

the corresponding values of x are the same. Hence for each point (x,y)
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of the graph there is also the point (z,-i/) on the graph. The graph there-

fore is symmetric with respect to the z-axis. On the other hand, the

assigning of numerically equal values of opposite signs to x leads to dif-

ferent corresponding values for y. Hence the graph is not symmetric with

respect to the y-axis. Similarly, it may be observed that the graph is not

symmetric with respect to the origin.

From the definitions of symmetry we have the following tests.

1. If an equation is unchanged when y is replaced by y, then the graph

of the equation is symmetric with respect to the x-axis.

2. // an equation is unchanged when x is replaced by x, then the graph of

the equation is symmetric with respect to the y-axis.

3. // an equation is unchanged when x is replaced by -x and y by -y, then

the graph of the equation is symmetric with respect to the origin.

These types of symmetry are illustrated by the equations

y
4 _

2y*
_ x o, x2 -

4i/ + 3 -
0, y = x*.

The graphs of these equations are respectively symmetric with respect to

the z-axis, the i/-axis, and the origin. Replacing x by -x and y by -y in

the third equation gives y = a:
3
,
which may be reduced to y = x3

.

Extent of a graph. Only real values of x and y are used in graphing an

equation. Hence no value may be assigned to either which would make
the corresponding value of the other imaginary. Some equations may
have any real value assigned to either variable. On the other hand, an

equation by its nature may place restrictions on the values of the variables.

Where there are certain excluded values, the graph of the equation is

correspondingly restricted in its extent. Frequently the admissible, and

therefore the excluded, values are readily determined by solving the equa-
tion for each variable in terms of the other.

FIGURE 1-4
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EXAMPLE 1. Using the ideas of intercepts, symmetry, and extent, discuss the

equation 4x2 + 9t/
2 =

36, and draw its graph.

Solution. Setting y = 0, we find x = 3. Hence the z-intercepts are 3

and 3. By setting x =
0, the y-intercepts are seen to be 2 and 2.

The equation is not changed when x is replaced by x; neither is it changed
when y is replaced by y. The graph therefore is symmetric with respect to both

axes and the origin.

Solving the equation for each variable in terms of the other, we obtain

y and

If 9 x2
is negative, y is imaginary. Hence x cannot have a value numerically

greater than 3. In other words, x takes values from 3 to 3, which is expressed

symbolically by 3 < x < 3. Similarly, values of y numerically greater than 2

must be excluded. Hence the admissible values for y are 2 < y < 2.

A brief table of values, coupled with the preceding information, is sufficient

for constructing the graph. The part of the graph in the first quadrant (Fig. 1-4)

comes from the table
;
the other is drawn in accordance with the known symmetry.

EXAMPLE 2. Graph the equation x2 + 4y 12 = 0.

Solution. Setting ?/
= and then x =

0, we find the ^-intercepts
= 2\/3

and the ^-intercept = 3.

If x is replaced by z, the equation is unchanged. A new equation results

when y is replaced by y. Hence the graph is symmetric with respect to the

y-axis, but not with respect to the z-axis or the origin.

i i i\ i i i i X
o

FIGURE 1-5
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Solving the equation in turn for x and y, we obtain

and y
12 -

We see that y must not be greater than 3, but x has no excluded values.

From the preceding facts and the table of values the graph is drawn in Fig. 1-5.

Only a part of the graph is indicated because the curve extends downward indefi-

nitely.

EXERCISE 1-3

Discuss each equation with regard to intercepts and symmetry,
excluded values, if any, of each variable, and draw the graph,
in the Appendix to obtain square roots.)

1. z2 + i/
2 -

16^
3. z2 = y

- 4.

5. 9z2 + 4t/
2 = 36.

7. y - *3
.

9. y
2 = z3

.

Determine the

(See Table 1

2. i/
2 = 9z.

4. z2 -
*/
2 = 16.

6. 4z2 -
9*/

2 = 36.

8. y = x3 - 4z.

10. 1/2
= x3 - 4z.

11. 9z/
2 - 16z2 = 144. 12. 25z2 + 9y

2 = 225.

13. Prove that a curve which is symmetric with respect to both axes is sym-
metric with respect to the origin. Is the converse true?

14. Prove that a curve which is symmetric with respect to the it-axis and the

origin is symmetric with respect to the y-axis.

1-7 The graph of an equation in factored form. Equations sometimes

appear with one member equal to zero and the other member expressed
as the product of factors in terms of x and y. When an equation is in

this form its graph can be more simply obtained by first setting each of

the factors equal to zero. If the coordinates of a point make one of the

factors equal to zero, they make the product equal to zero and therefore

satisfy the given equation. On the other hand, the coordinates of a point
which make no factor equal to zero do not satisfy the equation. Hence
the graph of the given equation consists of the graphs of the equations
formed by setting each of the factors of the nonzero member equal to zero.

EXAMPLE. Draw the graph of (3z
-

y
-

l)(y*
-

9z) = 0.

Solution. Setting each factor equal to zero, we have the equations

3z - y - 1 = and y
2 - 9z = 0.
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FIGURE 1-6

The equation 3x y 1 = is of the first degree in x and / We shall see later

that the graph of any first degree equation in two variables is a straight line. For

this reason such equations are called linear. Hence the graph of a linear equation

can be constructed by drawing a line through two points whose coordinates satisfy

the equation. The second equation is not linear, and several points need to be

plotted in order to draw the graph. The graph of the original equation comprises

the two parts shown in Fig. 1-6.

EXERCISE 1-4

Draw the graphs of the following equations:

1. x2 -
if
= 0.

3. (x
- 2y + 3) (2* + y + 4) = 0.

5. z2 - xy - 6*/
2 = 0.

7. x*y
-

9t/
2 - 0.

2. (x + l)(2x + y + 4)

4. xy(x + y
-

2)
- 0.

6. y
2 - xy - 4y = 0.

8. x(x* + if
-

4)
= 0.

,0.^-1-0.

0.

1-8 Intersections of graphs. If the graphs of two equations in two

variables have a point in common, then, from the definition of a graph,

the coordinates of the point satisfy each equation separately. Hence the

point of intersection gives a pair of real numbers which is a simultaneous

solution of the equations. Conversely, if the two equations have a simul-

taneous real solution, then their graphs have the corresponding point in

common. Hence simultaneous real solutions of two equations in two

unknowns can be obtained graphically by reading the coordinates of their

points of intersection. Because of the imperfections in the process, the

results thus found are usually only approximate. If the graphs have no
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point of intersection, there is no real solution. In simple cases the solu-

tions, both real and imaginary, can be found exactly by algebraic processes.

EXAMPLE 1. Draw the graphs of the equations

y
2 - 9x =

0,

3x - y
- 1 = 0,

and estimate the coordinates of the points of intersection. Solve the system alge-

braically and compare results.

Solution. These are the equations whose graphs are shown in Fig. 1-6. Refer-

ring to this figure, we estimate the coordinates of the intersection points to be

(.l,-.8) and (1.6, 3.8).

To obtain the solutions algebraically, we solve the linear equation for x and

substitute in the other equation. Thus

whence

.

-
3y

- 3 * 0, and
3=fc \/2f

By substituting these values in the linear equation, the corresponding values for

x are found to be (5 rfc V2l)/6. Hence the exact coordinates of the intersection

points are _ _
3 _I +

V21) 6 2

These coordinates to two decimal places are (1.60,3.79) and (.07, .79).

EXAMPLE 2. Find the points of intersection of the graphs of

y = x3
, y = 2 - x.

\

\

FIGURE 1-7
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Solution. The graphs (Fig. 1-7) intersect in one point whose coordinates

are (1,1).

Eliminating y between the equations yields

a* + x - 2 = 0, or (x
-

l)(z
2 + x + 2) = 0,

whence

The corresponding values of y are obtained from the linear equation. The solu-

tions, real and imaginary, are

^7 5- V^7\ -\ - V^7 5

2 2 2 2

The graphical method gives only the real solution.

EXERCISE 1-5

Graph each pair of equations and estimate the coordinates of any points of

intersection. Check by obtaining the solutions algebraically.

1. x + 2y =
7, 2. 2x - y = 3,

3x - 2y = 5. 5* + 3y = 8.

3. X2 + y2
=

13> 4< X2 _ 4^ = 0,

3z - 2//
= 0. j/

2 = 6x.

5. x2 + 2z/
2 =

9, 6. x2 + i/
2 =

16,

2x - y = 0. y
2 = 6x.

7. ?/
= x3

,
8. z/

= x2
,

y = 4x. x + y
- 1 = 0.

9. x2 -
y
2 =

9, 10. ?/
= x3

4x,

r2 + j/

2 = 16. ?/
= x + 4.

11. z/
2 =

8j, 12. x2 + 4?/
2 = 25,

2.r'- y = 4. 4x2 -
lip = 8.

1-9 Asymptotes. If the distance of a point from a straight line ap-

proaches zero as the point moves indefinitely far from the origin along a

curve, then the line is called an asymptote of the curve. (See Figs. 1-8,

1-9.) In drawing the graph of an equation it is well to determine the

asymptotes, if any. The asymptotes, usually easily found, furnish an

additional aid in graphing. At this stage we shall deal with curves whose

asymptotes are either horizontal or vertical. The following examples

illustrate the procedure.

EXAMPLE 1. Determine the asymptotes and draw the graph of the equation

xy = 1.

Solution. The graph is symmetric with respect to the origin. We next notice

that if either variable is set equal to zero, there is no corresponding value of the



14 FUNCTIONS AND GRAPHS [CHAP. 1

other variable which satisfies the equation. This means that there is no intercept

on either axis, and also that zero is an excluded value for both variables. There

are no other excluded values, however.

Solving for y, the equation takes the form

Suppose we give to x successively the values 1, J, J, i, iV and so on. The cor-

responding values of y are 1, 2, 4, 8, 16, and so on. We see that as x is assigned

values nearer and nearer zero, y becomes larger and larger. In fact, by taking x

small enough, the corresponding value of y can be made to exceed any chosen

number. This relation is described by saying that as x approaches zero, y increases

without limit. Hence the curve extends upward indefinitely as the distances from

points on the curve to the 2/-axis approach zero. The y-axis is therefore an asymp-
tote of the curve.

Similarly, if we assign values to x which get large without limit, then y, being

the reciprocal of x, approaches zero. Hence the curve extends indefinitely to the

right, getting nearer and nearer to the z-axis, yet never touching it. The x-axis

is an asymptote of the curve. Since there is symmetry with respect to the origin,

the graph consists of the two parts drawn in Fig. 1-8.

FIGURE 1-8
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EXAMPLE 2. Draw the graph of x*y 4y = 8.

Solution. The i/-intercept is 2. But if we set y =
0, there is obviously no

value of x which will satisfy the equation. Hence there is no z-intercept. The

graph has symmetry with respect to the y-axis but not with respect to the x-axis.

The part of the graph to the right of the y-axis may first be determined and then

the other drawn by the use of symmetry.

Solving the equation for y gives

y
8

(1)

Notice the right member of the equation. We see that it is negative for 2 <x <2,
and the graph in this range is below the z-axis. Further, if x has a value slightly

less than 2, the denominator is near zero. Then the fraction, which is equal to

y, has a numerically large value. As x increases still closer to 2, the correspond-

ing values of y can be made to increase numerically without limit. If, however,

x approaches 2 through values greater than 2, the values of y are positive and

increase without limit. Hence the line x = 2 is an asymptote of the curve both

below and above the or-axis.

_J I I L

FIGURE 1-9
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To examine for a horizontal asymptote, we notice equation (1) and let x be-

come large without limit. The corresponding values of y approach zero, and

y = is therefore an asymptote. This asymptote also becomes evident when

the given equation is solved for x. Taking the positive roots, we get

X =

In this form we see that as y approaches zero through positive values, x increases

without limit. This shows that y = is an asymptote. This form also reveals

the excluded values of y. Since the radicand is not to be negative, the values

2 < y < are excluded.

The graph is constructed in Fig. 1-9.

In each of the preceding problems the asymptotes are evident when
the equation is solved for each variable in terms of the other. For equa-

tions which are thus readily solvable, we state the following rules.

1. Solve the given equation for y in terms of x. If the result is a fraction

whose denominator contains x, set each real linear factor of the denominator

equal to zero. This gives the vertical asymptotes.

2. Solve the given equation for x in terms of y. If the result is a fraction

whose denominator contains y, set each real linear factor of the denominator

equal to zero. This gives the horizontal asymptotes.

EXERCISE 1-6

Discuss and sketch the graphs of each of the following equations. Draw the

horizontal and vertical asymptotes.

1. xy + 1 - 0.

3. (x + 1)(2/
-

1)
- 1.

5. xy* - 4.

7. x*y - 8.

9. sj/
2 + 3t/

2 - 4 = 0.

11. 2
t/ y *= 4.

13. y*(x + 8) - 10.

15. 2/(s
-

2)
2 = 16.

17. x*y + 9y = 4.

19 x*u* ~*~ x* " 4?v2 *~'

21. x2
y - x2 - 9y + 16 - 0.

23. xY - x* - 9i/
2 + 16 - 0.

2. xy - x = 3.

4. xy + 3x - 2y - 8 =

6. x*y
- 9 - 0.

8. x*y* 64.

10. x2
?/ + 3x2 - 4 = 0.

12. xy*
- x - 4 = 0.

0.

14. x*y
- x

16. xy* +
18. xY +
20. xY -

22. x*y
-

0.

0.

+ y + 4

+ 4x + 4

y
2 - 4.

* + 4y* - 0.

-
16y + 9 - 0.

24. - x* - 16y
2 + 9 = 0.



CHAPTER 2

FUNDAMENTAL CONCEPTS AND FORMULAS

2-1 Directed lines and segments. A line on which one direction is

defined as positive and the opposite direction as negative is called a

directed line. In analytic geometry important use is made of directed

lines. Either direction along a given line may be chosen as positive. The
x-axis and lines parallel to it are positive to the right. Vertical lines have

their positive direction chosen upward. A line not parallel to a coordinate

axis, when regarded as directed, may have either direction taken as

positive.

The part of a line between two of its points is called a segment. In

plane geometry the lengths of line segments are considered, but directions

are not assigned to the segments. In analytic geometry, however, line

segments are often considered as having directions as well as lengths.

Thus in Fig. 2-1, AB means the segment from A to B, and BA stands for

the segment from B to A. The segment AB is positive, since the direc-

tion from A to B agrees with the assigned positive direction of the line as

indicated by the arrowhead. The segment BA, on the other hand, is

negative. If there are 3 units of length between A and B, for example,
then AB +3 and BA = 3. Hence, in referring to directed segments,

AB B -BA.

If A, B, and C are three points of a directed line, then the directed

segments determined by these points satisfy the equations

AB + BC = AC, AC + CB = AB, BA + AC = BC.

If B is between A and C, the segments AB, BC, and AC have the same

direction, and AC is obviously equal to the sum of the other two. The
second and third equations can be found readily from the first. To ob-

tain the second, we transpose BC and use the fact that BC = CB. Thus

B

A B

FIGURE 2-1 FIGURE 2-2

17
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FIGURE 2-3

2-2 The distance between two points. In many problems the distance

between two points of the coordinate plane is required. The distance

between any two points, or the length of the line segment connecting

them, can be determined from the coordinates of the points. We shall

classify a line segment as horizontal, vertical, or slant
,
and derive appropriate

formulas for the lengths of these kinds of segments. In making the deriva-

tions we shall use the idea of directed segments.
Let P\(xi,y) and P2(z2 ,2/) be two points on a horizontal line, and let A

be the point where the line cuts the y-axis (Fig. 2-3). We have

APZ
- AP1

Similarly, for the vertical segment QiQ2 ,

QiQ2
- QiB
- BQ, - BQl

=
2/2
-

2/i.

Hence the directed distance from a first point to a second point on a hori-

zontal line is equal to the abscissa of the second point minus the abscissa

of the first point. The distance is positive or negative according as the

second point is to the right or left of the first point. A similar statement
can be made relative to a vertical segment.

Inasmuch as the lengths of segments, without regard to direction, are

often desired, we state a rule which gives results as positive quantities.

RULE. The length of a horizontal segment joining two points is the abscissa

of the point on the right minus the abscissa of the point on the left.

The length of a vertical segment joining two points is the ordinate of the

upper point minus the ordinate of the lower point.



2-2] THE DISTANCE BETWEEN TWO POINTS

Y

19

C( -2,4) 0(6,4)

Afl,0) B(5,0)

H(3,-2)

G(3,-5)

FIGURE 2-4

We apply this rule to find the lengths of the segments in Fig. 2-4.

,45 = 5-1=4, CD = 6 - (-2) = 6 + 2 = 8,

EF - 1 - (-4) = 1+4 =
5, GH = -2 -

(-5) = -2 + 5 = 3.

o

FIGURE 2-5

We next consider two points which determine a slant line. Let the

points be PI (1,2/1) and P2Or2 ,*/2). Draw a line through P\ parallel to the

x-axis and a line through P2 parallel to the y-axis (Fig. 2-5). These two

lines intersect at the point R, whose abscissa is x2 and whose ordinate is y\.

Hence

PiR = x2
-

x\ and JBP2
=

t/2
-

y\.

By the Pythagorean theorem,

Denoting the length of PiP by d, we have

d =
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The positive square root is chosen because we shall usually be interested

only in the magnitude of the segment. We state this distance formula in

words.

THEOREM. To find the distance between two points, add the square of the

difference of the abscissas to the square of the difference of the ordinates and

take the positive square root of the sum.

In employing the distance formula either point may be designated by

(1,3/1) and the other by (0:2,2/2). This results from the fact that the two

differences involved are squared. The square of the difference of two

numbers is unchanged when the order of the subtraction is reversed.

C(-2,5)

.5(5,1)

FIGURE 2-6

EXAMPLE. Find the lengths of the sides of the triangle with the vertices

A(-2,-3), 5(5,1), and C(-2,5).

Solution. The abscissas of A and C are the same, and therefore side AC is

vertical. The other sides are slant segments. The length of the vertical side is

the difference of the ordinates. The distance formula yields the lengths of the

other sides. Thus we get

AC = 5 - (-3) = 5 + 3 =
8,

AB - V(5 + 2)
2 + (1 + 3)

2 - V65,

EC - V(5 + 2)
2 + (1

-
5)

2 = V65.

The lengths show that the triangle is isosceles.

EXERCISE 2-1

1. Plot the points A(l,0), (3,0), and C(7,0). Then find the following directed

segments: AB, AC, EC, BA, CA, and CB.

2. Given the points A (2, -3), 5(2,1), and C(2,5), find the directed distances

AB, BA, AC, CA, BC, and CB.
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3. Plot the points 4(-l,0), B(2,0), and C(5,0), and verify the following

equations by numerical substitutions: AB + BC = AC] AC + CB = 4B;
BA + AC = BC.

Find the distance between the pairs of points in problems 4 through 9:

4. (1,3), (4,7). 5. (-3,4),(2,-8).

6. (-2,-3), ri,0). 7. (5, -12), (0,0).

8. (0,-4), (3,0). 9. (2,7), (-1,4).

In each problem 10-13 draw the triangle with the given vertices and find the

lengths of the sides:

10. 4(1, -1), B(4,-l), C(4,3). 11. 4(-l,l), B(2,3), C(0,4).

12. 4(0,0), B(2,-3), C(-2,5). 13. 4(0,-3), B(3,0), C(0,-4).

Draw the triangles in problems 14-17 and show that each is isosceles:

14. 4(-2,l), B(2,-4), C(6,l). 15. 4(-l,3), B(3,0), C(6,4).

16. 4(8,3), B(l,-l), C(l,7). 17. 4(-4,4), B(-3,-3), C(3,3).

Show that the triangles 18-21 are right triangles:

18. 4(1,3), B(10,5), C(2,l). 19. 4(-3,l), B(4,-2), C(2,3).

20. 4(0,3), B(-3,-4), C(2,-2). 21. 4(4,-3), B(3,4), C(0,0).

22. Show that 4(- v/3,1), B(2\/3, -2), and C(2\/3,4) are vertices of an equi-

lateral triangle.

23. Given the points 4(1,1), B(5,4), C(2,8), and D(-2,5), show that the quad-
rilateral ABCD has all its sides equal.

Determine if the points in each problem 24-27 lie on a straight line:

24. (3,0), (0,-2), (9,4). 25. (2,1), (-1,2), (5,0).

26. (-4,0), (0,2), (9,7). 27. (-!,-!), (6,-4), (-11,8).

28. If the point (x,3) is equidistant from (3, -2) and (7,4), find x.

29. Find the point on the */-axis which is equidistant from ( 5, 2) and (3,2).

2-3 Inclination and slope of a line. If a line intersects the x-axis, the

inclination of the line is defined as the angle whose initial side extends to

the right along the x-axis and whose terminal side is upward along the line.*

In Fig. 2-7 the angle is the inclination of the line, MX is the initial side,

and ML is the terminal side. The inclination of a line parallel to the

x-axis is 0. The inclination of a slant line is a positive angle less than 180.

The slope of a line is defined as the tangent of its angle of inclination.

A line which leans to the right has a positive slope because the inclination

is an acute angle. The slopes of lines which lean to the left are negative.

* When an angle is measured from the first side to the second side, the first

side is called the initial side and the second side is called the terminal side. Fur-

ther, the angle is positive or negative according as it is measured in a counter-

clockwise or a clockwise direction.
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FIGURE 2-7

The slope of a horizontal line is zero. Vertical lines do not have a slope,

however, since 90 has no tangent. %

If the inclination of a nonvertical line is known, the slope can be de-

termined by the use of a table of trigonometric functions. Conversely,
if the slope of a line is known, its inclination can be found. In most prob-

lems, however, it is more convenient to deal with the slope of a line rather

than with its inclination.

The following theorem is a direct consequence of the definition of slope.

THEOREM.
are equal.

Two nonvertical lines are parallel if and only if their slopes

If the coordinates of two points on a line are known, we may find
tjhe

slope of the line from the given coordinates. We now derive a formula
for this purpose. J

Let Pi(#i,2/i) and ^2(^2,2/2) be the two given points, and indicate the

slope by m. Then, referring to Fig. 2-8, we have

m = tan & =
PiR

FIGURE 2-8
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FIGURE 2-9

x

If the line slants to the left, as in Fig. 2-9,

m = tanfl= _^LJ/? = ^lU.
Xz -"

X\ 2 X\

Hence the slope is determined in the same way for lines slanting either to

the left or to the right.

THEOREM. The slope m of a line passing through two given points

P\(xi,yi) and PZ(XZ,UZ) is equal to the difference of the ordinates divided by

the difference of the abscissas taken in the same order; that is

mt
This formula yields the slope if the two points determine a slant line.

If the line is vertical, the denominator is zero. Hence a slope is not de-

fined for a vertical line. Conversely, if the denominator is equal to zero,

the points are on a vertical line. We observe, further, that either of the

points may be regarded as Pi(x\,y\) and the other as Pi(xi }y^ y
since

3/2
- -

1/2

EXAMPLE. Given the points A(-2,-l), (4,0), C(3,3), and Z>(-3,2), show

that ABCD is a parallelogram.

Solution. We determine from the slopes of the sides if the figure is a parallelo-

gram.

Slope of AB

slope of CD

-,

, slope of DA - __ = -3.

The opposite sides have equal slopes, and therefore ABCD is a parallelogram.



24 FUNDAMENTAL CONCEPTS AND FORMULAS [CHAP. 2

2-4 Angle between two lines. Two intersecting lines form four angles.

There are two pairs of equal angles, and an angle of one pair is the supple-

ment of an angle of the other pair. We shall show how to find a measure

of each angle in terms of the slopes of the lines. Noticing Fig. 2-10 and

recalling that an exterior angle of a triangle is equal to the sum of the two

remote interior angles, we see that

<t> + 0i - 02 or <t>
= 62

-
0i.

Using the formula for the tangent of the difference of two angles, we find

tan 2
- tan 0i

tan <t>

- tan (02
-

0i)
1 + tan 0i tan 2

If we let mi - tan 2 and m\ = tan 0i, then we have

tan <(>
-

where m2 is the slope of the terminal side, m\ is the slope of the initial side,

and <t> is measured in a counterclockwise direction.

The angle \l/
is the supplement of

<t>,
and therefore

7?l2
tan ^ = -tan <t>

This formula for tan ^ is the same as that for tan < except that the

terms in the numerator are reversed. We observe from the diagram,

however, that the terminal side of ^ is the initial side of
<t> and that the

initial side of ^ is the terminal side of
</>,

as indicated by the counterclock-

wise arrows. Hence, in terms of the slopes of initial and terminal sides,

the tangent of either angle may be found by the same rule. We state

this conclusion as a theorem.

FIGURE 2-10
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THEOREM. // <t> is an angle, measured counterclockwise, between two

lines, then

where w2 is the slope of the terminal side and m\ is the slope of the initial

side.

This formula will not apply if either of the lines is vertical, since a slope

is not defined for a vertical line. For this case, the problem would be that

of finding the angle, or function of the angle, which a line of known slope

makes with the vertical. Hence no new formula is necessary.

For any two slant lines which are not perpendicular formula (1) will

yield a definite number as the value of tan <t>. Conversely, if the formula

yields a definite number, the lines are not perpendicular. Hence we con-

clude that the lines are perpendicular when, and only when, the denomi-

nator of the formula is equal to zero. The relation 1 + m\m* = may be

written in the form

7^2 = >

mi

which expresses one slope as the negative reciprocal of the other slope.

THEOREM. Two slant lines are perpendicular if, and only if, the slope

of one is the negative reciprocal of the slope of the other.

EXAMPLE. Find the tangents of the angles of the triangle whose vertices are

4 (-2,3), #(8, -5), and C(5,4). Find each angle to the nearest degree. (See

Table II of the Appendix.)

Solution. The slopes of the sides are indicated in Fig. 2-11. Substituting in

formula (1), we get

A( -2,3) C(5,4)

5(8, -5)

FIGURE 2-11
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B=33
-

C - 100'.

EXERCISE 2-2

1. Give the slopes for the inclinations (a) 45; (b) 0; (c) 60; (d) 120; (e) 135.

Find the slope of the line passing through the two points in each problem 2-7 :

2. (2,3), (3,7). 3. (6, -13), (0,5).

4. (-4,8), (7,-3). 5. (5,4), (-3,-2).

6. (0,-9), (20,3). 7. (4,12), (-8,-!).

8. Show that each of the following sets of four points are vertices of a parallelo-

gram ABCD:

(a) A(2,l), B(6,l), C(4,4), D(0,4).

(b) A(-3,2), B(5,0), C(4,-3), D(-4,-l).
(c) A(0,-3), fl(4,-7), (7(12, -2), D(8,2).

(d) A(-2,0), B(4,2), (7(7,7), 0(1,5).

9. Verify that each triangle with the given points as vertices is a right triangle

by showing that the slope of one of the sides is the negative reciprocal of the slope

of another side :

(a) (5,-4), (5,4), (1,0). (b) (-1,1), (3,-7), (3,3).

(c) (8,1), (l,-2), (6,-4). (d) (-1.-5), (8,-7), (3,9).

(e) (0,0), (3,-2), (2,3). (f) (0,0), (17,0), (1,4).

10. In each of the following sets, show that the four points are vertices of a

rectangle :

(a) (-6,3), (-2,-2), (3,2), (-1,7). (b) (1,2), (6,-3), (9,0), (4,5).

(c) (0,0), (2,6), (-1,7), (-3,1). (d) (5,-2), (7,5), (0,7), (-2,0).

(e) (3,2), (2,9), (-5,8), (-4,1). (f) (5,6), (1,0), (4, -2), (8,4).

11. Using slopes, determine which of the following sets of three points lie on a

straight line:

(a) (3,0), (0,-2), (9,4). (b) (2,1), (-1,2), (5,0).

(c) (-4,0), (0,2), (9,7). (d) (-1.-1), (6,-4), (-11,8).

Find the tangents of the angles of the triangle ABC in each problem 12-15.

Find the angles to the nearest degrees.

12. A(-3,-l),B(3,3),C(-l,l).
13. A(-l,l),S(2,3),C(7,-7).

14. A(-3,l), 5(4,2), C(2,3).

15. A(0,3),B(-3,-4),C(2,-2).

16. The line through the points (4,3) and (-6,0) intersects the line through
(0,0) and (1,5). Find the intersection angles.
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17. Two lines passing through (2,3) make an angle of 45. If the slope of one

of the lines is 2, find the slope of the other. Two solutions.

18. What angle does a line of slope make with a vertical line?

2-5 The mid-point of a line segment. Problems in geometry make
much use of the mid-points of line segments. We shall derive formulas

which give the coordinates of the point midway between two points of

given coordinates.

Let PI(ZI,?/I) and P^(x^y^ be the extremities of a line segment, and let

P(x,z/) be the mid-point of PiP2. From similar triangles (Fig. 2-12), we
have

PiP PJf MP

Hence

PlN X2
-

Z]

Solving for x and y gives

and

-4-

MP = y-yi
NP2 2/2

-
y\

_ y^ +y2"
2

THEOREM. The abscissa of the mid-point of a line segment is half the sum

of the abscissas of the end points; the ordinate is half the sum of the ordinates.

This theorem may be generalized by letting P(x,y) be any division

point of the segment PiP2. Thus if

PiP = r.

then

x -

2*2
- and

N(x2 ,yi)

o

FIGURE 2-12
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These equations give

x = Xi + r(x2
-

Xi) and y = yi + r(y2 - tfi).

If P is between PI and P2 ,
as in Fig. 2-12, the segments PLP and PiP2

have the same direction, and the value of their ratio r is positive and less

than 1. If P is on PiP2 extended through P2 ,
then r is greater than 1.

If P is on the segment extended through Pi, the value of r is negative.

The converse of each of these statements is true.

EXAMPLE. Find the mid-point and the trisection point nearer P2 of the segment
determined by Pi(-3,6) and P2(5,l).

Solution.

+ x2 _ -3 + 5 _ -_X

2 22
For the trisection point we use r = .

x = xi + r(x2
-

xi)
= -3 + (5 + 3)

= } f

y = yi + r(y2 -2/0=6 + f(l
-

6) = f .

2-6 Analytic proofs of geometric theorems. By the use of a coordinate

system many of the theorems of elementary geometry can be proved with

surprising simplicity and directness. We illustrate the procedure in the

following example.

EXAMPLE. Prove that the diagonals of a parallelogram bisect each other.

Solution. We first draw a parallelogram and then introduce a coordinate sys-

tem. A judicious location of the axes relative to the figure makes the writing of

the coordinates of the vertices easier and also simplifies the algebraic operations

involved in making the proof. Therefore we choose a vertex as the origin and a

coordinate axis along a side of the parallelogram (Fig. 2-13). Then we write the

(0,0) pl(flfO)

FIGURE 2-13
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coordinates of the vertices as 0(0,0), Pi(a,0), P2(6,c), and P3(a + 6,c). It is

essential that the coordinates of P2 and P3 express the fact that P2P3 is equal and

parallel to OPi. This is achieved by making the ordinates of P2 and Pa the same

and making the abscissa of P3 exceed the abscissa of P2 by a.

To show that OP3 and PiP2 bisect each other, we find the coordinates of the

mid-point of each diagonal.

Mid-point of OP3 : x = ^ y = =

Mid-point of PiP,: x =

Since the mid-point of each diagonal is (
a

~ '

|)'
tne theorem is proved.

Note. In making a proof by this method it is essential that a general figure be

used. For example, neither a rectangle nor a rhombus (a parallelogram with all

sides equal) should be used for a parallelogram. A proof of a theorem based on a

special case would not constitute a general proof.

EXERCISE 2-3

1. Find the mid-point of AB in each of the following:

(a) X(-2,5), 5(4,-7); (b) X(7,-3), #(-3,9);

(c) A(-7 f 12), 5(11,0); (d) A(0,-7), 5(3,10).

2. The vertices of a triangle are 4(7,1), 5(-l,6), and C(3,0). Find the

coordinates of the mid-points of the sides.

3. The points A(-l,-4), 5(7,2), C(5,6), and D(-5,8) are vertices of the

quadrilateral ABCD. Find the coordinates of the mid-point of each line segment

connecting the mid-points of opposite sides.

Find the trisection points of the segment AB:

4. A(-9,-6), 5(9,6). 5. A(-5,6), 5(7,0).

6. A(-4,3), 5(8,-3). 7. A(-l,0), 5(4,6).

8. The points 4(2,2), 5(6,0), and (7(10,8) are vertices of a triangle. Deter-

mine if the medians are concurrent by finding the point on each median which

js J of the way from the vertex to the other extremity. (A median of a triangle

is a line segment joining a vertex and the mid-point of the opposite side.)

9. The points 4(2,1), 5(6, -3), and C(4,5) are vertices of a triangle. Find

the trisection point on each median which is nearer the opposite side.

10. The line segment joining A (-3,2) and 5(5, -3) is extended through each

end by a length equal to its original length. Find the coordinates of the new

ends.

11. The line segment joining A( 4, 1) and 5(3,6) is doubled in length by

having half its length added at each end. Find the coordinates of the new ends.

The points PI, P2 ,
and P are on a straight line in each problem 12-15. Find

r, the ratio of PiP to PiP2 .
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12. Pi(-l,-3), P2(5,l), P(2,-l). 13. PA1), P2(6,3), P(9,5).

14. PAlXPA-l), P(-l,3). 15. P l(-4 l2) f
P1(l l -2) f P(ll f -10).

Give analytic proofs of the following theorems:

16. The diagonals of the rectangle are equal. [Suggestion: Choose the axes so

that the vertices of the rectangle are (0,0), (a,0), (0,6), and (a,6).]

17. The mid-point of the hypotenuse of a right triangle is equidistant from the

three vertices.

18. The line segment joining the mid-points of two sides of a triangle is parallel

to the third side and equal to half of it.

19. The diagonals of an isosceles trapezoid are equal. [Hint: Notice that the

axes may be placed so that the coordinates of the vertices are (0,0), (a,0), (6,c),

and (a 6,c).]

20. The segment joining the mid-points of the nonparallel sides of a trapezoid

is parallel to and equal to half the sum of the parallel sides.

21. The segments which join the mid-points of the sides of any quadrilateral,

if taken in order, form a parallelogram.

22. The line segments which join the mid-points of the opposite sides of a

quadrilateral bisect each other.

23. The diagonals of a rhombus are perpendicular and bisect each other.

24. The sum of the squares of the sides of a parallelogram is equal to the sum

of the squares of the diagonals.

25. The lines drawn from a vertex of a parallelogram to the mid-points of the

opposite sides trisect a diagonal.

26. The medians of a triangle meet in a point which lies two-thirds of the way
from each vertex to the mid-point of the opposite side.



CHAPTER 3

THE STRAIGHT LINE

3-1 Introduction. The straight line is the simplest geometric curve.

Despite its simplicity, the line is a vital concept of mathematics and enters

into our daily experiences in numerous interesting and useful ways. In

Section 1 -7 we stated that the graph of a first degree equation in x and y

is a straight line; we shall now establish that statement. Furthermore,
we shall write linear equations in different forms such that each reveals

useful information concerning the location of the line which it represents.

3-2 The locus of a first degree equation. The equation

Ax + By + C = 0, (1)

where A
, /?, and C are constants with A and B not both zero, is a general

equation of the first degree. We shall prove that the locus, or graph, of

this equation is a straight line by showing that all points of the locus lie

on a line and that the coordinates of all points of the line satisfy the equa-
tion.

Let PI(XI,T/I) and P2 (^2,2/2) be any two points of the graph; that is,

Axl + Byi + C -
0, (a)

Ax2 + By* + C - 0. (b)

By subtraction, these equations yield

and if B 7* 0,

y\
-

y* = _ A
x\- xi B

The last equation shows that the slope of a line passing through two points

of the graph is -(A/B). Therefore if Ps(xi,2/i) is any other point of the

locus, the slope of the segment PiP3 is also -(A/B). From the equality

of these slopes we conclude that Pi, P2 ,
and P3 ,

and hence all points of the

locus, lie on a line. To determine if the graph consists of all points of this

line, we need to show that the coordinates of any other point of the line

satisfy the given equation (1). Denoting a point of the line by P4(x4> 2/4),

we have

2/4 -y\ _ _ A
z4
-

x\ B
31
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By clearing of fractions and transposing terms, this equation takes the

form

Ax* + By* - Axi - Byi - 0.

From equation (a), -Axi By\ - C, and hence

Ax* + By* + C = 0.

The point (4,1/4) satisfies the given equation. This completes the proof

except for the case in which 5 = 0. For this value of B equation (1)

reduces to

C
f _ .__ _ ,X ~ A

The coordinates of all points, and only those points, having the abscissa

(C/A) satisfy this equation. Hence the locus is a line parallel to the

2/-axis and located (C/A) units from the axis.

THEOREM. The locus of the equation Ax + By + C =
0, where A, B,

and C are constants with A and B not both zero, is a straight line. If

B =
0, the line is vertical; otherwise the slope is (A/B).

3-3 Special forms of the first degree equation. We shall now convert

equation (1) to other forms and interpret the coefficients geometrically.

Solving for y gives, where B 7* 0,

A C

The coefficient of x, as we have seen, is the slope of the line. By setting

x 0, we notice that the constant term is the ^-intercept. Substituting

m for the slope and b for the ^-intercept, we obtain the simpler form

y SB mx + b. (2)

This is called the slope-intercept form of the equation of a line. An equa-
tion in this form makes evident the slope and the y-intercept of the line

which it represents. Conversely, the equation of a line of given slope and

2/-intercept may be written at once by substituting the proper values for

m and 6.

Illustration. The equation of the line of slope -2 and passing through

(0,5) is y = -2x + 5.

We next express equation (1) in a form which gives prominence to the

x-intercept and the y-intercept. We have

Ax + By - -C,

^ +^-1 or
*

.
y Cl

-C + -C
"

lj or
-C/A

+
-C/B

X *
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The denominator of x in the last equation is the z-intercept and the

denominator of y is the ^-intercept. If we let a and b stand for the inter-

cepts, we have the equation

i + f-I. (3,

This is called the intercept form of the equation of a straight line. It may
be used when the intercepts are different from zero.

Equation (2) represents a line passing through (0,6). The equation

may be altered slightly to focus attention on any other point of the line.

If the line passes through (21,1/1), we have

y\
= mxi + 6, and 6 = y\ mx\.

Substituting for b gives

y = mx + yi
-

mx\,

and hence

y -
yi = m(x -

x,). (4)

Equation (4) is called the point-slope form of the equation of a line.

If the line of equation (4) passes through the point (#2,1/2), then

and we have

y -
yi =

^-E"7J
(*

-
*>) ^

It can readily be seen that the graph of this equation passes through the

points (xiii/i) and (0*2,1/2). This form is called the two-point form of the

equation of a straight line.

The equations (2)-(5) do not apply when the line is vertical. In this

case m is not defined, and neither could we substitute properly for the

intercepts in the forms (2) and (3). The equation of a vertical line can

be written immediately, however, if any point of the line is known. Thus

a vertical line through (xi,yi) has the abscissa x\ for all points of the line.

Hence the equation is

X = X\.

A horizontal line through (x\,yi) has m =
0, and equation (4) applies.

Of course, the ordinates are all the same on a horizontal line, and we could

write the equation directly as

y ==
yi*
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Illustrations. If a line cuts the coordinate axes so that the x-intercept

is 3 and the ^-intercept is -5, its equation by formula (3) is

1+^=1, or 5* -3s/ = 15.

The equation of the line through (1,4) with slope 3 is, by the point-

slope form,

y - 4 = 3(x + 1), .
or 3x - y + 7 = 0.

To obtain the equation of the line through (3,5) and (4,1), we substi-

tute in formula (5), and have

Whence, simplifying,

1y
_ 35 = - 4X - 12, or 4x + 7y = 23.

The illustrations show that formulas (2)-(5) can be employed to write,

quickly and simply, equations of lines which pass through two given points

or through one known point with a given slope. The inverse problem,
that of drawing the graph of a linear equation in x and y, is likewise simple.

Since the locus is a straight line, two points are sufficient for constructing
the graph. For this purpose the intercepts on the axes are usually the

most convenient. For example, we find the intercepts of the equation
3x - 4i/

= 12 to be a = 4 and b = -3. Hence the graph is the line drawn

through (4,0) and (0,-3), The intercepts are not sufficient for drawing a

line which passes through the origin. For this case the intercepts a and b

are both zero. Hence a point other than the origin is necessary.
We have seen that the slope of the line corresponding to the equation

Ax + By + C = Q is -(A/B). That is, the slope is obtained from the

equation by dividing the coefficient of x by the coefficient of y and revers-

ing the sign of the result. Hence we can readily determine if the lines

represented by two equations are parallel, perpendicular, or if they inter-

sect obliquely. Lines are parallel if their slopes are equal, and we recall

that two lines are perpendicular if the slope of one is the negative of the

reciprocal of the slope of the other.

EXAMPLE 1. Find the equation of the line which passes through (-1,3) and
is parallel to 4x + 3y = 2.

Solution. We shall show two ways for finding the required equation. First,

from the given equation, the slope is seen to be ($). Substituting this slope
value and the coordinates of the given point in the point-slope formula, we have

V - 3 - -|(a + 1),

or

4x + 3y = 5.
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Alternatively, we notice that 4x + 3y = D is parallel to the given line for any
real value of D. To determine D so that the line shall pass through ( 1,3), we
substitute these coordinates for x and y and obtain

4(-l) + 3(3) =
/>, or D = 5.

By using 5 for D, we have again the equation 4x + 3z/
= 5.

EXAMPLE 2. A point moves so that it is equally distant from the two points

A (3,2) and (5,6). Find the equation of its locus.

Solution. From plane geometry we know that the locus is the line perpendicular

to the segment AB and passing through its mid-point. The slope of AB is 2, and

the coordinates of the mid-point are (4,4). The required slope is . Hence we
write x + 2y = D. This equation has the proper slope, and we need to determine

D so that the line shall pass through (4,4). Substituting, we get

x + 2y = 4 + 2(4) = 12.

The required equation, therefore, is x + 2y = 12. We could also obtain this

equation by using the point-slope form (4).

EXERCISE 3-1

By solving for //, write each equation 1-12 in the slope-intercept form. In each

case give the value of the slope m and the value of the y-intercept b. Draw the

lines.

1. 3x + y = 6. 2. 3x - y
- 3 = 0. 3. 4x - 2y = 3.

4. 6z + 3y = 5. 5. x + 2y + 4 = 0. 6. x - by = 10.

7. 4x - 3//
= 0. 8. 2x + 7y = 0. 9. 5x + 3y = 7.

10. x - 8//
= 4. 11. 7x - lly = 9. 12. x + y = 6.

By inspection, give the slope and intercepts of each line represented by equa-

tions 13-24.

13. 4x - y = 12. 14. x - y = 7. 15. x + y + 4 = 0.

16. 4x + 9y - 36. 17. 3* - 4y = 12. 18. 6* - 3y - 10 = 0.

19. x + 7y = 11. 20. 2x + 3y = 14. 21. 7x + 3z/ + 6 = 0.

22. 3x - 8/y
= 5. 23. Sx + 3/y

= 4. 24. 3* + 3y = 1.

In each problem 25-36, write the equation of the line determined by the slope

m and the ^-intercept 6.

25. m = 3; b = -4. 26. m =
2; 6 = 3.

27. m = -4; b = 5. 28. m = -1;6 = 1.

29. m =
;
6 - -2. 30. m = $ ;

6 = -6.

31. m = 0; 6 = -6. 32. m -5; 6 = 0.

33. m = -J; 6 = -8. 34. m = 0; b = -2.

35. m = 0; b = 0. 36. m = -
;
6 = 0.
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Write the equation of the line which has the ^-intercept a and the ^-intercept 6

in each problem 37-48.

37. a = 3, b - 2. 38. a = 5, 6 - 1.

39. o = 4, 6 = -3. 40. a = 7, b = -5.

41. a - -2, b = -2. 42. a = -1, 6 - -1.

43. a =
,
6 = i 44. o $; 6 = 1.

45. a = -y- b = f 46. a -
,
6 = -2.

47. a - -, 6 = -y. 48. a = f, 6 = f .

In each equation 49-60, write the equation of the line which passes through
the point A with the slope m. Draw the lines.

49. 4(3,1); m = 2, 50. 4(-3,-5); ro = 1.

51. 4(-2,0); m =
. 52. 4(0, -3); m - -4.

53. 4(-3,-6); m = -f 54. 4(5, -2); m = -f.

55. 4(0,3); m = 0. 56. 4(3,0); m = 0.

57. A(0,0); m = -f 58. 4(0,0); m = f
59. 4(-5,-7); m = -6. 60. 4(9,1); m - -f

Find the equation of the line determined by the points 4 and B in each prob-
lem 61-72. Check the answers by substitutions.

61. 4(3,-l); B(-4,5). 62. 4(1,5); B(4,l).

63. 4(0,2); B(4,-6). 64. 4(-2,-4); B(3,3).

65. 4(3,-2);B(3,7). 66. 4(0,0); J3(3,- 4).

67. 4(5,-); B(i-2). 68. 4(*,5); B(-2,5).

69. 4(0,1) ;B(0,0). 70. 4(3,0); (4,0).

71. 4(-l,-l); (-2,-3). 72. 4(^,1); B(-l,f).

73. Show that Ax + By = DI and Bx Ay = Z)2 are equations of perpen-
dicular lines.

74. Show that the graphs of the equations

Ax + By = D!,

Ax + By = D2

are (a) the same if D\ = D2 ; (b) parallel lines if Z) A ^ D2 .

In each problem 75-84 find the equations of two lines through 4, one parallel

and the other perpendicular to the line corresponding to the given equation.
Draw the lines.

75. 4(4,1); 2x - Zy + 5 = 0. 76. 4(-l,2); 2x - y = 0.

77. 4(3,4) ;
Ix + 5y + 4 - 0. 78. 4(0,0) ;

x - y = 3.

79. 4(2,-3); Sx - y = 0. 80. 4(0,6); 2x - 2y 1.

81. 4(-l,l); y = 1. 82. 4(3,5); x - 0.

83. 4(7,0) ;
9z + y

- 3 = 0. 84. 4(-4,0) ;
4z + 3y = 3.
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85. The vertices of a triangle are A(l,0), 5(9,2), and C(3,6). Find the follow-

ing:

(a) the equations of the sides;

(b) the equations of the medians and the coordinates of their common point;

(c) the equations of the altitudes and the coordinates of their common point;

(d) the equations of the perpendicular bisectors of the sides and the coordinates

of their common point.

86. The vertices of a triangle are A (-2,3), 5(6, -6), and (7(8,0). Find the

equations of the lines and the coordinates of the points pertaining to this triangle

which are called for in problem 85.

3-4 The distance from a line to a point. The distance from a line to a

point can be found from the equation of the line and the coordinates of the

point. We shall derive a formula for this purpose. We observe first that

the distance from a vertical line to a point is immediately obtainable by

taking the difference of the abscissa of the point and the z-intercept of the

line. Hence no additional formula is needed for this case.

Let the equation of a slant line be written in the form

Ax + By + C =
Q, (1)

and let Pi(x\,yi) be any point not on the line. Since the line is a slant

line, B ^ 0. Consider now the line through PI parallel to the given line,

and the line through the origin perpendicular to the given line, whose

equations respectively are

Ax + By + C 1 -
0, (2)

Bx - Ay = 0. (3)

The required distance d (Fig. 3-1) is equal to the segment PQ, where P
and Q are the intersection points of the perpendicular line and the parallel

lines. The simultaneous solutions of equations (1) and (3), and equations

(2) and (3) give the intersection points

-BC \ -AC' -BC'

We employ the formula for the distance between two points to find the

length of PQ. Thus

I

(C
~

C/)2*2

-t-

(^ 2 + fi2)2

_ (C - C'?(A* + B2
) (C - C')

2

(A* + B*)
2 A2 + B2

'

and

C-C'
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FIGURE 3-1

Since the line of equation (2) passes through PI(ZI,I/I), we have

Axi + Byi + C' = 0, and C' = -Axi -
Byi.

Hence, substituting for C",

Ax^ 4- #wi 4- C
d =

To remove the ambiguity as to sign, we agree to give the radical in the

denominator the sign of B. In other words, the sign of the denominator

is selected so that the coefficient of y\ is positive. A consequence of this

choice of signs may be found by referring to the figure again, where P Pi

is parallel to the i/-axis and P (.ri,2/o) is a point of the given line. Since P
is a point on the line, we have

Now if we replace t/ by yi in the left side of this equation, we get an ex-

pression which is not equal to zero. The expression is positive if y\ > y$

and negative if y\ < y<>. That is, the expression for d is positive if PI is

above the line and negative if PI is below the line. We may therefore

regard the distance from a line to a point as a directed distance.

The preceding discussion establishes the following theorem :

THEOREM. The directed distance from the slant line Ax + By + C =

to the point Pi (#1,2/1) is given by the formula

* ^ + *" + C
(4)

where the denominator is given the sign of B. The distance is positive if

the point PI is above the line, and negative if P\ is below the line.
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Y

-4,1)

^3(9,0)

FIGURE 3-2

If equation (1) is divided by VA* + B2
,
the form

Ax + By + C _
VA*+B*

is obtained. This is called the normal form of the equation of a line.

When an equation is in the normal form, the distance from the line to a

point is given by substituting the coordinates of the point in the left mem-
ber of the equation. By substituting the coordinates of the origin, the

constant term is seen to be the perpendicular, or normal, distance to the

origin.

EXAMPLE 1. Find the distance from the line I2y

points Pi(3,-5), P2(-4,l), and P3(9,0).

5x - 26 to each of the

Solution. We write the equation in the form 5x + I2y + 26 = 0. The

required distances are then found by making substitutions in formula (4). Hence

, -5(3) + 12(-5) + 26 49

-5(-4) + 12(1) + 26 _ 58

13 13'

, -5(9) + 12(0) + 26
d3==

13

19

13'

The positive sign is used in the denominators because the coefficient of y is posi-

tive. The signs of the results show that PI and PS are below the line and that Pz

is above the line (Fig. 3-2).

EXAMPLE 2. Find the distance between the parallel lines 15x Sy 51 =0
and 15z - Sy + 68 = 0.

Solution. The distance can be found by computing the distance from each line

to a particular point. To minimize the computations, we find the distance from

each line to the origin. Thus

A 15(0)
-

8(0)
- 51 _ -51 _. __ _ ^
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, _ 15(0)
-

8(0) + 68 68 _ Ad2
TIT :=T7

~ ~ 4 *

The origin is 3 units above the first line and 4 units below the second line. Hence

the lines are 7 units apart.

An alternate method for this problem would be to find the distance from one

of the lines to a particular point on the other. The point (0, 8.5) is on the second

line, and using this point and the first equation, we find

, _ 15(0)
-

8(8.5)
- 51 -119 _ .

3-5 Families of lines. We have expressed equations of lines in various

forms. Among these are the equations

y = mx + 6 and M- 1 -

Each of these equations has two constants which have geometrical signifi-

cance. The constants of the first equation are m and b. When definite

values are assigned to these letters, a line is completely determined. Other

values for these, of course, determine other lines. Thus the quantities m
and 6 are fixed for any particular line but change from line to line. These

letters are called parameters. In the second equation a and 6 are the

parameters.

FIGURE 3-3
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A linear equation with only one parameter is obtained if the other

parameter is replaced by a fixed value. The resulting equation repre-

sents all lines with a particular property if the remaining parameter is

allowed to vary. Each value assumed by the parameter yields an equa-
tion which represents a definite line. The collection of lines defined by a

linear equation with one parameter is called a family, or system, of lines.

For example, if m =
3, the point-slope equation becomes

y = 3z + b.

This equation represents the family of lines of slope 3, one line for each

value of b. There are, of course, infinitely many lines in the family. In

fact, a line of the family passes through each point of the coordinate plane.

Figure 3-3 shows a few lines of the family corresponding to the indicated

values of the parameter b.

EXAMPLE 1 . Write the equation of the system of lines defined by each of the

following conditions:

(a) parallel to 3x - 2y =
5,

(b) passing through (5, 2),

(c) having the product of the intercepts equal to 4.

Solutions. The following equations are easily verified to be those required.

(a) 3x - 2y = D. (b) y + 2 = m(x - 5).

(c)
-
a
+ j^= 1, or 4* + oty-4n.

EXAMPLE 2. Write the equation of the system of lines which are parallel to

5x + 12/y + 7 = 0. Find the members of the family which are 3 units distant

from the point (2,1).

Solution. Each member of the family 5x -f 12// 4- C = is parallel to the

given line. We wish to find values of C which will yield lines 3 units from the

point (2,1), one passing above and the other below the point. Using the formula

for the distance from a line to a point, we obtain the equations

5(2) + 12(1) + C _ 5(2) + 12(1) + C _
13

3
'

13
~*

The roots are C = 17 and C = 61. Hence the required equations are

5* + \2y + 17 = and 5z + I2y
- 61 - 0.

3-6 Family of lines through the intersection of two lines. The equation

of the family of lines passing through the intersection of two given lines

can be written readily. To illustrate, we consider the two intersecting

lines

From the left members of these equations we form the equation

(2*
-

30 + 5) + fc(4x + y
-

11) - 0, (1)
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where fc is a parameter. This equation is of the first degree in x and y

for any value of k. Hence it represents a system of lines. Furthermore,
each line of the family goes through the intersection of the given lines.

We verify this statement by actual substitution. The given lines intersect

at (2,3). Then, using these values for x and t/, we get

(4-9 + 5) + fc(8 + 3- 11) =0,
+ fc(0)

-
0,

= 0.

This result demonstrates that equation (1) is satisfied by the coordinates

(2,3) regardless of the value of k. Hence the equation defines a family of

lines passing through the intersection of the given lines.

More generally, let the equations

C2
=

define two intersecting lines. Then the equation

(A& + Biy + Ci) + k(A& + B*y + C2)
=

represents a system of lines through the intersection of the given lines.

To verify this statement, we first observe that the equation is linear for

any value of A. Next we notice that the coordinates of the intersection

point reduce each of the parts in parentheses to zero, and hence satisfy the

equation for any value of k.

EXAMPLE. Write the equation of the system of lines through the intersection

of x - 7y + 3 = and 4z + 2y - 5 - 0. Find the member of the family which

has the slope 3.

Solution. The equation of the system of lines passing through the intersection

of the given lines is

(x
- 7y + 3) + k(4x + 2y - 5) =

0,

or, collecting terms,

(1 + 4fc)z + (-7 + 2k)y + 3 - 5* = 0.

The slope of each member of this system, except for the vertical line, is ^
Equating this fraction to the required slope gives

=

3, and k = 2.

The member of the system for k * 2 is 9x 3y 7 = 0.

EXERCISE 3-2

Find the distance from the line to the point in each problem 1-6.

1. 5x + I2y + 60 = 0; (3,2). 2. 4x - 3y = 15; (4,1).
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3. x + y
- 3 - 0; (4,5). 4. 3* + y - 10; (-3,-!).

5. -2x + 5y + 7 = 0; (6,0). 6. y =
7; (3, -8).

Determine the distance between the pair of parallel lines in each problem 7-10.

7. 4x - 3y - 9 =
0, 4z - 3z/

- 24 0.

8. 12z + 5y =
13, 12x + 5i/

= 104.

9. 15z - 8#
- 34 =

0, 15x - 8y + 51 = 0.

10. x + y + 7 -0, z + y- 11 - 0.

Write the equation of the system of lines possessing the given property in each

problem 11-18. In each case assign three values to the parameter and draw the

corresponding lines.

11. Parallel to 7x - 4y = 3.

12. Passing through (-3,4).

13. Having the x-intercept twice the y-mtercept.

14. Perpendicular to 2z 5y + 3 = 0.

15. Having the y-intercept equal to 4.

16. Having the sum of the intercepts equal to 10.

17. Through the intersection of x - 2y + 7 = and 5x - ly - 3 = 0.

18. Forming with the coordinate axes a triangle of area 16.

Tell what geometric property is possessed by all the lines of each system in

problems 19-26.

19. y = mx + 4. 20. y = 2x + b.

21. 9x + 2y = k. 22. y + 4 - m(x - 3).

25. (4x - 7y - 7) + ky = 0. 26. (4* + y + 1) + fc(3x + ly) = 0.

27. In the preceding problems 19-26 determine the line of the system which

passes through (3,0).

28. Write the equation of the family of lines of slope 3, and find the two

members passing 5 units from the origin.

In each problem 29-34 find the equation of the line which passes through the

intersection of the pair of lines and satisfies the other given condition.

29. 3x + y
- 2 -

0, x + by
- 4 =

0; through (5,2).

30. 5z -f 3y + 2 = 0, x - y
- 2 - 0; m = -3.

31. x - lit/
=

0, 3s + y
- 5 = 0; a vertical line.

32. 6s - 2y = 3, x - 5y = 4; m = 0.

33. 3x - 4y - 2 0, 3x + 4y + 1 =0; intercepts are equal.

34. 2ar-i/-5 =
0, x + i/-4 = 0; passing through (0,0).

35. The sides of a triangle are on the lines defined by 2x 3y + 4 =
0,

x + y + 3 =
0, and 5x - 4y - 20 0. Without solving for the vertices, find

the equations of the altitudes.
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36. Find the equations of the bisectors of the angles formed by the lines

4x + 3#
- 12 - and 5x - I2y

- 60 = 0. [Suggestion: Let P(x,y) be a point

on a bisector and use the fact that each point of a bisector is equally distant from

the sides.]

37. Find the equations of the bisectors of the angles formed by the lines

x + 2y + 3 * and 2x + y
- 2 = 0.

38. Write the equation Ax + By + C = in normal form. Show that in

this form the coefficient of x is equal to cos w and the coefficient of y is equal to

sin w, where w is the inclination of the perpendicular segment drawn from the

origin to the line.



CHAPTER 4

TRANSFORMATION OF COORDINATES

4-1 Introduction. Suppose that we have a curve in the coordinate

plane and the equation which represents the curve. We wish to take

another pair of axes in the plane and find the equation of the same curve

with respect to the new axes. The new equation will depend on the original

equation and the location of the new axes. The process of changing from

one pair of axes to another is called a transformation of coordinates.

The device of transforming coordinates is a powerful and much used

procedure. Numerous problems, many of a practical nature, can be

conveniently begun with the coordinate axes in a certain position and

carried forward more easily by using axes in another position. We shall

find in Chapter 5 that considerable advantage is gained by the transforma-

tion process. There the study of second degree equations and their loci

is greatly simplified by the proper location of the coordinate axes.

4-2 Translation of axes. When the new axes are parallel to the original

axes, and similarly directed, the transformation is called a translation of

axes. The coordinates of each point of the plane are changed under a

translation of axes. Consequently, the equation of a curve referred to

the original axes and the equation of the same curve referred to the new
axes are, in general, not the same.

To see how the coordinates of a point are changed by a translation of

axes, notice Fig. 4-1. The new axes O'X' and O'Y' are parallel respec-

tively to the old axes OX and OF. The coordinates of the new origin 0'

referred to the original axes are denoted by (h,k). Thus the new axes

can be obtained by shifting the old axes h units horizontally and fc units

vertically while keeping their directions unchanged. Let x and y stand

for the coordinates of any point P when referred to the old axes and let

x 1 and y' be the coordinates of the point P when referred to the new axes.

It is evident from the figure that

x . ON - OM + O'Q - h + x',

y = NP = MO' + QP = k + y'.

Hence

* = *' + /,, y = y' + fc. (1)

These formulas give the relations of the old and new coordinates. They
hold for all points of the plane, where the new origin 0' is any chosen

45
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point of the plane. Holding for all points of the plane, the formulas

apply in particular to the points of a curve. Consequently, the substitu-

tions x f + h for x, and y
f + k for y in the equation of a curve referred to

the original axes yield the equation of the same curve referred to the trans-

lated axes.

EXAMPLE 1. Find the transformed equation of

xy - 3x + 2y
- 12 =

if the origin is translated to the point ( 2,3).

Solution. Here h = 2 and k = 3. Hence the translation equations (1) are

x = x' - 2 and y -
y' + 3.

Making these substitutions in the given equation, we get

(x
r -

2)Q/' + 3)
-

3(x'
-

2) + 2(y' + 3)
- 12 -

0,

x'y' + 3z' - 2y'
- 6 - 3*' + 6 + 2y' + 6 - 12 =

0,

x'y
1 -6 = 0.

The transformed equation has no first degree terms. The graph is more easily

constructed by use of this equation and the new axes. The origin of the new axes

is 2 units to the left of the old origin and 3 units upward. Both sets of axes and
the graph are drawn in Fig. 4-2.

EXAMPLE 2. Translate the axes so that the equation

2z2 + 3#
2 - 10* + ISy + 26 -

is transformed to a simpler form.

Solution. We do not know in advance what the translation should be. Hence
we use the translation formulas with h and k unknown. Thus we have
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0' (-2,3)

FIGURE 4-2

2(x' + h)* + 3(y' + k)*
-

10(x' + fc) +W + ft) + 26 -
0,

2x'2
-f 3i/

2 + (4/i
-

10)*' + (6* + 18)//' + 2fc
2 + 3*2 - lOfc + 18* + 26 = 0. (2)

We set the coefficients of x' and y' equal to zero. This gives 4h 10 = and

6& + 18 =
0, and hence h = 5/2, k = 3. These values for h and k reduce

equation (2) to

2x'2 + 3?/'
2 -

(27/2) -
0, or 4x'2

-h 6i/
/2 = 27.

This simplification can also be made by completing the squares in the x and y

terms. Using this plan, we have from the original equation

-fa ) + 3(#
2 + 6y )

= -26,

2[x
2 - 5x + (25/4)] + 3(y

2 + 6y + 9)
= -26 + (25/2) + 27,

2[x
-

(5/2)]' + 3(y + 3)'
- 27/2.

In this form we observe that the transformation equations x = x' + 5/2 and

y =
y' 3 will yield an equation free of first degree terms. Thus we obtain, as

before, 4z/2 + 6y'
2 = 27.

EXAMPLE 3. By a translation of axes, find a simplification of the equation

x2 - 6x - 6y
- 15 = 0.
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-X'

Solution. Applying the translation formulas, we have

(x' + h)*
-

6(z' + h)
-

6(i/' + A;)
- 15 = 0,

x'2 + 2Ax' + h2 Qx
f

6/z> 6t/'' Qk 15 = 0,

x'* + (2h
- 6X -

6y' + (h*
- 6/1 - Qk - 15) = 0.

The a;'
2 and i/' terms have coefficients independent of h and k, and may not be

eliminated. We can achieve a simplification, however, by eliminating the x' term

and the constant terms. Thus solving the equations

2^-6 = and A2 - 6h - 6A; - 15 =

simultaneously gives h =
3, k = 4. These values for h and k lead to the equa-

tion

x'2 - 6i/'
- 0.

This result can also be obtained by completing the square in the x terms, and

selecting the translation which will eliminate the x' term and the constant terms.

Thus the given equation yields

x2 - 6x + 9 - 60 + 15 + 9,

(x
-

3)
2 - 6(y + 4).

By translating the origin to (3, 4), this equation becomes x 12 =
of axes and the graph are drawn in Fig. 4-3.

Both sets

EXERCISE 4-1

Determine the new equation in each problem 1-8 if the origin is translated to

the given point.

1. 3x + 2y =
6; (4, -3). 2. 5x - 4y + 3 - 0; (1,2).

3. (2/-2)' = 6(*-3);(2,3).

4. (x + 3)
2 + (y + 5)

2 - 25; (-3,-5).

5. x* + y* + I2x - Sy + 48 -
0; (-6,4).

6. x2 - 4* - ly + 46 - 0; (2,6).
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7. xy - x - y
- 10 = 0; (1,1).

8. x-8* + 3r- y + 3;(l,-2).

In each problem 9-14 give the point to which the origin must be translated in

order that the transformed equation shall have no first degree term. Find also

the new equation.

9. x2 + if
- 2x - 4y - 4 = 0.

11. xy - 2x - 3// -8 = 0.

13. 2x2 + 4//
2 + I2x + 8y + 4 = 0.

10. 2x2 + 2//
2 - 8x + 5 = 0.

12. x2 -
y*
- Sx + Qy + 3 = 0.

14. 9x2 + 4y
2 - 8y = 0.

In each problem 15-18 eliminate the constant term and one of the first degree

terms.

15. z/
2 -

6</ + 4x + 5 = 0.

17. i/
2 + lOx + 4y + 24 = 0.

16. x2 - 2x - 8i/
- 15 = 0.

18. i/
2 -

4t/
- z + 1 = 0.

4-3 Rotation of axes. When the hew axes have the same origin but di-

rections different from the original axes, the transformation is called a

rotation of axes. That is, the new axes may be obtained by rotating the

original axes through an angle about the origin.

We shall derive transformation formulas, for a rotation through an

angle 0, which express the old coordinates in terms of the new coordinates.

In Fig. 4-4 the coordinates of the point P are (x,y) referred to the original

axes OX and OF, and are (*',?/') when referred to the new axes OX' and

OF'. We notice that x = OM and y = A/P, x' = OS and y'
= SP. The

segment RS is drawn parallel to the x-axis and NS is parallel to the y-axis.

Hence we have

x

y

= O.V - MN = O.V - RS = x' cos -
y' sin 0,

MP = MR + RP = NS + RP = x' sin + y' cos 0.
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The rotation formulas, therefore, are

x = x' cos - y
f
sin 0,2

y = *' sin 9 + y
f
cos 9J (1)

We have derived these formulas for the special case in which 6 is an acute

angle and the point P is in the first quadrant of both sets of axes. The
formulas hold, however, for any and for all positions of P. A proof that

the formulas hold generally could be made by observing the proper con-

ventions as to the sign of and the signs of all distances involved.

EXAMPLE 1. Transform the equation x* y* 9 = by rotating the axes

through 45.

Solution. Using = 45, the rotation formulas (1) are

= JL. _ yL = JL_ ]LX ~~

V2 V2
y ~

\/2 \/2*

We make the substitutions in the given equation and have

2x'y' + 9 = 0.

The graph and both sets of axes are constructed in Fig. 4-5.

FIGURE 4-5
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EXAMPLE 2. _Find the acute angle of rotation such that the transformed equa-
tion of 2x2 + V3xy + y*

= 8 will have no x'y' term.

Solution. We employ the rotation formulas in order to find the required

angle 6. Substituting for x and ?/, we get

2(z' cos -
y' sin 6)* + ^(x f

cos 6 - y' sin 6)(x' sin 6 + y
f
cos 6)

+ (x' sin 6 + y' cos BY = 8.

We perform the indicated multiplications, collect like terms, and obtain

(2 cos2 6 + V3 sin 6 cos + sin2
0)z'

2 + (-2 sin cos + \/3 cos2

- \/3 sin2
B)x'y' + (2 sin2 6 - >/3 sin cos + cos2 0)y'

2 = 8. (2)

Since the x'y' term is to vanish, we set its coefficient equal to zero. Thus we have

-2 sin 6 cos 6 + V3(cos2 - sin2
6)
= 0.

Using the identities sin 26 = 2 sin 6 cos and cos 28 = cos2 sin2
0, the equation

takes the form

-sin 20+ V3cos20 =
0,

whence

tan 20 = \/3, 20 =60, = 30.

A rotation of 30 eliminates the x'y' term. This value of reduces equation (2) to

EXERCISE 4-2

Find the new equation in problems 1-8 when the axes are rotated through the

given angle.

1. V3x -
y = 4;

= 60. 2. x + y = 6; = 45.

3. Xy = 4; = 45. 4. r> + if
= a2

;

= 40.

5. x2 + TV + y
2 = 1

;

= 45. 6. z2 - V3xy + 2*/
2 = 2; = 30.

7. x2 -
4xt/ + 4?/

2 - 8\/5x - 4v/
5y = 0; = arc tan J.

8. z2 + V&ry + 2y
2 = 3; = arc tan v/3.

Find the angle of rotation in each problem 9-12 such that the transformed

equation will have no x'y' term.

9. 3xy + y
- 2 - 0. 10. x2 - xy + 5 - 0.

11. x2 - 3xy + 4y
2 + 7 = 0. 12. j2 + 3xy - x + y = 0.

Simplification of second degree equations. In the two preceding

sections we used transformations which led to simpler forms of various first

and second degree equations. In the next chapter we shall study second

degree equations systematically. To facilitate this study, it will be desir-

able to have equations in their simplest forms. We now consider the sim-

plest forms of second degree equations.
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The general second degree, or quadratic, equation in x and y is repre-

sented by

Ax* + Bxy + Cy* + Dx + Ey + F = 0. (1)

At least one of the constants A, B, and C must be different from zero in

order for the equation to be of the second degree. We assume, too, that

not all the coefficients of terms involving one of the variables is zero.

That is, both x and y appear in the equation.

If B =
0, and A and C are both different from zero, we may complete

the squares in the x and y terms, as in Example 2, Section 4-2. Then it

is easy to find the translation which will reduce the equation to the form

AV2 + C'y'
2 + F' = 0.

If B and one of the coefficients A and C is also zero, we may find the

translation, as in Example 3, Section 4-2, which will reduce the equation

(1) to one of the forms

By2 + D'x' = or AV2 + E'y' = 0.

If B ^ 0, an essential part of the simplification consists in obtaining a

transformed equation lacking the product term x'y'. We shall show how
to determine immediately an angle of rotation which will serve for this

purpose. In equation (1) we substitute the right members of the rotation

formulas for x and y. This gives, after collecting like terms, the equation

AV2 + B'x'y' + C'y'* + D'x' + E'y' + F' -
0,

where the new coefficients are

A' - A cos2 + B sin cos + C sin2
6,

B' - B cos 26- (A- C) sin 26,

C' = A sin2 6 - B sin 6 cos 6 + C cos2
6,

D' - D cos 6 + E sin 6,

E' = E cos 6 - D sin 6,

F' -F.

The x f

y
f term will vanish only if its coefficient is zero. Hence 6 must

satisfy the equation

B' = B cos 26 - (A -
C) sin 26 = 0.

If A 76 C, the solution is

B
tan 26 * A-C

This formula yields the angle of rotation except when A = C. If A =
C,

the coefficient of x'y' is B cos 26. Then the term vanishes by giving 6 the

value 45. Thus we see that an equation of the form (1) with an xy term

can be transformed into an equation free of the product term x'y'.
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We summarize the preceding results in the following theorem.

THEOREM. A second degree equation

in which B = can be transformed by a translation into one of the forms

A'x'* + C'y'* + F = 0,

A!*'* + E'y' = 0, (2)

cy2 + D'X' = o.

// B j& 0, one of these forms can be obtained by a rotation and a translation

(if necessary). The angle of rotation 6 (chosen acute) is obtained from
the equation

tan2g = B
r > if A * C,A C

= 46, if A = C.

By this theorem we see how to find the value of tan 26. The rotation

formulas, however, contain sin 6 and cos 6. These functions can be ob-

tained from the trigonometric identities

/I
- cos 26 a ll

sin 6 = */
^

cos 6 = A/
+ cos 26

The positive sign is selected before each radical because we shall restrict 6

to an acute angle.

EXAMPLE. Reduce the equation

73jr2 - 72xy + 52//
2 + lOOr - 200// + 100 =

to one of the forms (2).

Solution. We first transform the equation so that the product term x'y' will

be lacking. To find the angle of rotation, we have

.

ofl _ B
__

-72 _ -24
tan 20- J^Tc- 73^-52- 7

'

whence

-7
cos2*-

T5

. . /A -cos20 4 , . /I + cos 26 3
sin 6 HB A/ = - and cos 6 = '

Hence

2 5 \ 2 5

The rotation formulas are then

3z' 4t/' , 4x'
x ^

^ anc| ^ =
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FIGURE 4-6

By substituting for x and y in the given equation and simplifying, we get

z'2 + 4i/'
2 - 4x' - Sy' + 4 = 0.

Completing the squares in the x' and y
f

terms, this equation becomes

Cr'-2) 2 +4(2/'- 1)
2 -4=0.

Finally, a translation to the point (2,1) yields the desired form

x"2 + 42/
"2 -4 = 0.

It is much easier to draw the graph from this equation than by using the original

equation. The graph and the three sets of axes are constructed in Fig. 4-6.

EXERCISE 4-3

Translate the axes so that the constant term is eliminated. Draw both sets of

axes and the graph:

1. 3z - 4y = 6. 2. x = 6.

Rotate the axes through an acute angle such that the x' or the y' term is elimi-

nated:

3. 3x - 4t/
= 6. 4. x + y = 0.

Reduce each of the equations 5-8 to one of the simplified forms (2).

5. x2 -
2xy + y*

- 8V2t, -8 = 0.

6. 3x2 + 2V3xy + 2/
2 - 2x - 2vHy - 16 = 0.

7. 73*2 - 72xy + My* + 380x - 1602/ + 400 = 0.

8. 7x2 + 4Sxy - 7y
2 - 150z - 5Qy + 100 - 0.
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9. Show that the graph of the quadratic equation in one variable

Ax2 + Dx + F = is one line, two parallel lines, or that no real value of x satis-

fies the equation, according as the discriminant Z)2 4AF is zero, positive, or

negative.

Write the left members of the following equations as the product of two linear

factors. Draw the graphs corresponding to the real factors.

10. z2 - x - 6 = 0. 11. z2 + 6z + 9 = 0.

12. z2 + x - 1 = 0. 13. x2 + x + 1 = 0.

14. Work out all the steps of the rotation transformation which is applied to

equation (1), Section 4-4.



CHAPTER 5

THE SECOND DEGREE EQUATION

6-1 Introduction. In this chapter we shall study second degree, or

quadratic, equations in two variables. The general quadratic equation in

x and y may be expressed in the form

Ax2 + Bxy + <V + Dx + Ey + F = 0. (1)

The study of this kind of equation in some respects is less simple than the

case of the linear equation. Any linear equation in two variables has a

locus, and the locus is a straight line. In contrast, not all second degree

equations have loci, and those having loci represent different types of

curves. Our principal interest, however, will be in equations which have

loci.

The locus of a quadratic equation in two variables is called a conic

section or, more simply, a conic. This designation comes from the fact

that the locus or curve can be obtained as the intersection of a right cir-

cular cone and a plane.* Conic sections were investigated, particularly

by Greek mathematicians, long before analytic methods were introduced.

Various properties of conies were discovered and this phase of geometry
received much emphasis. Today the interest in conic sections is enhanced

by numerous important theoretical and practical applications which have

been found.

Obviously, different kinds of conic sections are possible. A plane, not

passing through the vertex of a cone, may cut all the elements of one nappe
and make a closed curve (Fig. 5-1). If the plane is parallel to an element,

the intersection extends indefinitely far along one nappe but does not cut

the other. The plane may cut both nappes and make a section of two

parts, with each extending indefinitely far along a nappe. In addition

to these sections the plane may pass through the vertex of the cone and

determine a point, a line, or two intersecting lines. An intersection of

this kind is sometimes called a degenerate conic. The section consisting

of two intersecting lines approaches two parallel lines if the cone is made
to approach a cylinder by letting the vertex recede indefinitely far. For

this reason, two parallel lines are classed with the degenerate conies.

* A right circular cone is the surface generated by a line which passes through
a fixed point on a fixed line and moves so that it makes a constant angle with the

fixed line. The fixed point is the vertex and the generating line in any position
is called an element. The vertex separates the cone into two parts called nappes.

56



5-2] THE SIMPLIFIED EQUATIONS OF CONICS 57

FIGURE 5-1

5-2 The simplified equations of conies. Despite the interesting geo-

metric way in which conies first became known, we shall approach their

study as loci of second degree equations rather than as the intersections

of planes and cones. In our study we shall take advantage of the simpli-

fied equations

A* + Cy
2 + F = 0, (2)

Cy
2 + Dx = 0, (3)

Xx2 + Ey = 0,

'

(4)

which were obtained in Section 4-4.

Normally, equations (2)-(4) represent conies. There are exceptional

cases, however, depending on the values of the coefficients. The excep-

tional cases are not our main interest, but we do notice them. Equa-
tion (2) has no locus if A, C, and F are all of the same sign, for then there

are no real values of x and y for which the terms of the left member add

to zero. If F =
0, and A and C have the same sign, only the coordinates of

the origin satisfy the equation. Selections of values for the coefficients

may be variously made so that equation (2) represents two intersecting
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lines, two parallel lines, or one line. An equation of the form (3) or (4)

always has a locus, but the locus is a line if the coefficient of the first degree

term is zero. The point and line loci of second degree equations are called

degenerate conies, as was previously noted.

Aside from the exceptional cases, we shall discover that equations of

the form (2) represent different types of curves, depending on the relative

values of A and C. We shall consider the cases in which (a) A = C,

(b) A and C have the same sign but are unequal, and (c) A and C have

opposite signs. The equations (3) and (4) are not essentially different so

far as their loci are concerned. This statement may be justified by noting

that a rotation of 90 will transform either equation into one having the

form of the other.

6-3 The parabola. We shall consider first equations (3) and (4). Each
of these equations has only one second degree term, and in this respect

is simpler than equation (2). By division and transposition we reduce

the equations to the forms

(5)

(6)

which will be found more convenient. The locus of an equation of either

of these forms, or which -can be reduced to one of these forms, is called a

parabola. Restricting our attention for the moment to equation (5), we
observe at once certain characteristics of its locus. The graph passes

through the origin and is symmetric with respect to the x-axis. If a > 0,

x may have any positive value or zero, but may have no negative value.

As x increases, the values of y increase numerically. Hence the graph

FIGURE 5-2
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FIGURE 5-3

extends indefinitely far into the first and fourth quadrants (Fig. 5-2).

If a < 0, then x may assume only zero and negative values, and the graph

extends into the second and third quadrants.

Similarly, the graph of equation (6) passes through the origin and is

symmetric with respect to the #-axis. The parabola opens upward or

downward depending on whether a is positive or negative.

The line of symmetry of a parabola is called the axis of the parabola.

The intersection of the axis and the parabola is called the vertex.

6-4 The focus-directrix property of a parabola. Having observed cer-

tain obvious properties of a parabola, we look more closely for further in-

formation. We see that the left member of y*
= 4ax represents the square

of a distance, and the right member is a constant times the first power of a

distance. Keeping distances in mind, we inquire if the equation may be

altered so that both sides represent like powers of distances. The right

member may be regarded as the middle term of the square of a binomial,

and it becomes a perfect square by the addition of x2 + 4a2
. This changes

the left side to x2 + 4a2 + ?/
2

,
which is not a perfect square. The left side

now appears to need a first degree term in x. With this suggestion, we
return to the original equation and introduce a first degree term in the

left member by transposing from the right member. Thus \ve have

i/
2 - 2ax

x2 - 2ax + a2 + y
2

(x
-

a)
2 + ?/

Taking positive square roots, we obtain

: x2 + 2ax + a2
,

(x + a)
2

.

(x + a),
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where the sign in the right member is to be chosen so that (x + a) is posi-

tive. This equation is subject to a ready interpretation in terms of dis-

tances. The left member is the distance between any point (x,y) of the

parabola and the point F(a,0). The right member is the distance from

the line x - a to the point (x,y). Hence we conclude that all points of

a parabola are equally distant from a fixed point and a fixed line. The
fixed point is named the focus and the fixed line the directrix. We state

this result as a theorem.

THEOREM. Each point of a parabola is equally distant from a fixed

point (focus) and a fixed line (directrix).

The focus of y*
= 4az is F(a,0) and the directrix is the line x = a.

The focus of x
2 = 4ay is F(0,a) and the directrix is the line y = a.

The chord drawn through the focus and perpendicular to the axis of a

parabola is given the Latin name latus rectum. The length of the latus

rectum can be determined from the coordinates of its end points. By
substituting a for x in the equation y

2 = 4ox, we find

4a2 and y = 2a.

ThisHence the end points of the latus rectum are (a, 2a) and (a,2a).

makes the length equal to the numerical value of 4a.

The vertex and the extremities of the latus rectum are sufficient for

making a rough sketch of the parabola. A few additional points, however,
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would greatly improve the accuracy. Figures 5-4 to 5-7 show carefully

constructed parabolas corresponding to the equations y
2 = 4ax and

rr
2 =

4ai/.

Summarizing, we make the following remarks regarding the equations

y
2 = 4, (6)

x2 = 4ay. (6)

Equation (5) represents a parabola with vertex at the origin and focus at

(a,0). The parabola opens to the right if a is positive and to the left if

a is negative. Equation (6) represents a parabola with vertex at the

origin and focus at (0,a). The parabola opens upward if a is positive

and downward if a is negative. The numerical value of a is the distance

FIGURE 5-7
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between the vertex and the focus, and its sign tells in which direction to

measure this distance. The length of the latus rectum is equal to the

absolute value of 4a. The graph of an equation in one of these forms can

be quickly drawn, the vertex and ends of the latus rectum being sufficient

for a rough sketch.

The forms (5) and (6) can be applied to find the equations of parabolas

which satisfy certain specified conditions. We illustrate their use in some

examples.

EXAMPLE 1 . Write the equation of the parabola with vertex at the origin and

the focus at (0,4).

Solution. Equation (6) applies here. The distance from the vertex to the

focus is 4, and hence a = 4. Substituting this value for a, we get

x2 -
16*/.

EXAMPLE 2. A parabola has its vertex at the origin, its axis along the x-axis,

and passes through the point (3,6). Find its equation.

Solution. The equation of the parabola is of the form */
2 = 4ax. To determine

the value of a, we substitute the coordinates of the given point in this equation.

Thus we obtain

36 = 4o(-3), and 4a = -12.

The required equation is y
2 = I2x. The focus is at (3,0), and the given

point is the upper end of the latus rectum. The graph is constructed in Fig. 5-8.

FIGURE 5-8
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EXAMPLE 3. The equation of a parabola is j*
2 = 6#. Find the coordinates

of the focus, the equation of the directrix, and the length of the latus rectum.

Solution. The equation is of the form (6), where a is negative. Hence the

focus is on the negative //-axis and the parabola opens downward. From the

equation 4a =
6, we find a = 3/2. Therefore the coordinates of the focus

are (0, 3'2) and the directrix is y = 3 '2. The length of the latus rectum is

numerically equal to 4a, and in this case is 6. The latus rectum extends 3 units

to the left and 3 units to the right of the focus. The graph may be sketched by

drawing through the vertex and the ends of the latus rectum. For more accurate

graphing a few additional points could be plotted. (See Fig. 5-9.)

EXERCISE 5-1

Find the coordinates of the focus, the coordinates of the ends of the latus

rectum, and the equation of the directrix of each parabola in problems 1-6. Sketch

each curve.

1. //
2 = 4x. 2. y

2 = -16*. 3. x* = -10#.

4. * = \2y. 5. y* + 3* = 0. 6. x2 - By = 0.

Write the equation of the parabola with vertex at the origin and which satisfies

the given conditions in each problem 7-16.

7. Focus at (3,0). 8. Focus at (-4,0).

9. Directrix is x + 6 = 0. 10. Directrix is y
- 4 = 0.

11. Latus rectum 12, and opens downward.

12. Focus on the ?y-axis, and passes through (2,8).

13. Axis along the ?/-axis, and passes through (4, 3).

14. Ends of latus rectum are (3, 6) and (3,6).

15. Opens to the left, and passes through ( 1, 1).

16. Opens to the right, and the length of the latus rectum is 16.
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17. A cable suspended from supports which are at the same height and 400 feet

apart has a sag of 100 feet. If the cable hangs in the form of a parabola, find its

equation, taking the origin at the lowest point.

18. Find the width of the cable of problem 17 at a height 50 feet above the

lowest point.

6-5 The ellipse. We next consider the equation

Ax* + Cy* + F =
0, (2)

where A and C have the same sign and F has the opposite sign. If A = C,

we may write the equation as x2 + y
2 = F/A. The left member is the

square of the distance of any point (x,y) from the origin. Hence the locus

is a circle and the right member is the square of the radius. Indicating

the radius by r, we have the more suggestive form

x* + 3,2
= r2. (7)

If A 9* C, the locus of equation (2), or an equation reducible to this

form, is defined as an ellipse. By setting x and y in turn equal to zero,

we find the squares of the intercepts on the axes to be F/A and F/C.

Using a2 = -F/A and 62 = -F/C, equation (2) becomes

b*
(8)

The intercepts are thus brought into prominence, and for still other

reasons this form will be convenient. We shall regard a and b as positive,

and for definiteness take a > 6.

We notice first that the graph of equation (8) is symmetric with respect

to both coordinate axes. Solving for x and y in turn, we have

and

FIGURE 5-10
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These equations show that y
2 must not exceed 62

,
and z2 must not exceed

a2
. In other words, the permissible values of the variables are given by

-a < x < a and -6 < y < b. The graph (Fig. 5-10) cuts the z-axis at the

points V'(-a,0) and F(a,0), and cuts the y-axis at B'(0,-6) and B(0,6).

The segment F'7(= 2a) is called the major axis of the ellipse, and B'B(= 26)

is the minor axis. The ends of the major axis are called vertices. The

intersection of the major and minor axes is the center of the ellipse. (The

designation of the vertices by V and V comes from the first letter in

the word vertex.)

FIGURE 5-11

The graph of

(9)

is drawn in Fig. 5-11. The ellipses represented by equations (8) and (9)

are alike except for their positions relative to the coordinate axes.

6-6 The foci of an ellipse. An important property of the ellipse is the

fact that the sum of the distances from each point of the ellipse to two

fixed points is constant. The fixed points, called foci, are on the major

axis and equidistant from the center. We shall prove this property of

the ellipse.
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Figure 5-12 shows the graph of equation (8). The points F'(~c,0)

and F(c,0) denote the foci, where for the moment c is undetermined. For

the vertex V we have F'V + FV = F'V + V'F' = 2a. Thus the con-

stant 2a is the sum of the distances from the vertex to the foci. Hence

we need to show that the sum of the distances from any point on the

ellipse to the foci is equal to 2a. By considering next the special point B,

the value of c may be determined. In order that F'B + FB should be

equal to 2a, each of these segments must have a length equal to a. This

gives, from the right triangle OFfi, the relation c2 = a2 62
. Using this

relation and the equation of the ellipse, we next show that F'P + FP is

equal to 2a, where P(x,y) is any point of the ellipse. Denoting this sum

by S, we have

S = V(x + c)
2 + i/

2 + \/(x
-

c)
2 + y*.

Whence, squaring and collecting like terms,

(a)

S2 - 2z2 + 2if + 2c2 + 2Vx4 - 2cV + c4 + 2xV + 2c2
//

2 + ?/
4

. (b)

If we replace c2 by a2 - 62
,
the radicand becomes

a4 + 64 + x4 + ?/
- 2a262 - 2aV + 2a2

?/
2 + 26V -

2b*y* + 2x*if.

An examination of this expression reveals that it is equal to

(a
2 + 62 - z2 -

?/)
2

if the signs of each of the terms 2a262
,
2a2

?/

2
,
and 26V are reversed. The

equation of the ellipse, (8), yields 262x2 + 2a2
#
2 - 2a262 =

0, which shows

that the signs of the three terms may be reversed without changing the

value of the radicand. Hence we have

FIGURE 5-12
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2 + 2a2 - 2b2 + 2(a
2 + b2 - rr

2 -
?/
2
)
= 4a2

67

We chose the positive square root of the radical of equation (b). This is

necessary because the radical is the product of the two positive radicals

of equation (a). That we chose the positive square root may be observed

from the figure. We notice that a2 + 62 > x2 + ?/
2

,
and hence a2 + b2

x2
7/
2 > 0. It is necessary also to select the positive square root of

4a2
,
since S is the sum of two positive quantities. We state the result as

a theorem.

THEOREM. The sum of the distances from each point of an ellipse to two

fixed points (foci) of the major axis is constant and equal to the length of

the major axis.

The foci of -^ + |2
= 1

c2 - a2 - b2
.

the points ( r,0) and (r,0), where

The foci of
-
2
-f ,

-
2
= 1 are the points (0, c) and (0,c), where

still c2 = a2 - b\

The chord through a focus and perpendicular to the major axis is called

a latus rectum. Substituting x = c in the equation of the ellipse (8) and

using the relation c2 = a2
fo
2

,
the points (e, b2

a) and (r,6
2
'a) are found

to be the ends of one latus rectum. Hence the length of the latus rectum

is 262
/a. The ellipse and each latus rectum are drawn in Fig. 5-13.

Y

5-13
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6-7 The eccentricity of an ellipse. The ratio c/a is called the eccen-

tricity e of the ellipse. The shape of the ellipse depends on the value of

its eccentricity. For example, suppose that we visualize an ellipse in

which the major axis remains constant, while e starts at zero and ap-

proaches unity. If e = 0, the equations e = c/a and b2 = a2 c2 show that

c = and a = 6. The two foci are then coincident at the origin and the

ellipse is a circle. As e increases, the foci separate, each receding from

the origin, and 6 decreases. As e approaches 1, c approaches a, and 6

approaches 0. Thus the ellipse, starting as a circle, becomes narrow, with

all its points near the major axis.

EXAMPLE 1. Find the equation of the ellipse with foci at (0,4) and a vertex

(at 0,6.)

Solution. The location of the foci shows that the center of the ellipse is at the

origin, that the equation is of the form (9), antf that c = 4. The given vertex,

6 units from the center, makes a = 6. Using the relation b2 = a2 c2
,
we find

b2 = 20. Hence the required equation is

36
+

20
= L

EXAMPLE 2. Sketch the ellipse 9z2 + 25y
2 = 225.

Solution. Dividing by 225 gives the form

25
+

9
= L

Since the denominator of x2
is greater than the denominator of y

2
,
the major axis
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is along the z-axis. We see also that a2 = 25, b2 = 9, and c = Vo2 62 = 4.

Hence the vertices are at (5,0), the ends of the minor axis at (0,3), and the

foci at (4,0). The length of a latus rectum is 262
/a = 18/5. The locations of

the ends of the axes and the ends of each latus rectum are sufficient for making
a sketch of the ellipse. Figure 5-14 shows the curve with several important

points indicated.

EXERCISE 5-2

Find the coordinates of the foci, the ends of the axes, and the ends of each

latus rectum in problems 1-10. From this information sketch the curves.

1
?/ + x*

-
1 2 4-^-1lm

25
+ 9~~

} ' *'
169

+ 25"
lu

3
*' + ?y

'
-

1 4
y
*

+ J2 -
1*' T69M44" IB 4>

25
+

16
~ l '

r2
/v
2 r2

?v
2

R *
i !/ i a *

i

"
i5

-49
+

25
=L 8

-9-
+ r *'

7. 25.r2 + 4//
2 = 100. 8. x2 + 4*/

2 = 9.

9. 4.r
2 + if

= 4. 10. 2J2 + 3?/
2 = 12.

Write the equations of the ellipses whose axes coincide with the coordinate

axes, and which satisfy the conditions given in problems 11-18.

11. Vertex (4,0); end of minor axis (0,3).

12. Focus (2,0); vertex (5,0).

13. Focus (0, 4); minor axis 4.

14. Minor axis 12; vertex (9,0).

15. Focus (3,0); length of latus rectum 9.

16. End of minor axis (5,0); length of latus rectum f$.

17. Passing through (3,5) and (7,5/3).

18. Passing through (3,V2) and (v/6,2).

19. The perimeter of a triangle is 30, and the points (0, 5) and (0,5) are two

of the vertices. Find the locus of the third vertex.

20. A point moves so that the sum of its distances from (3,0) and (3,0) is 8.

Find the equation of its path.

21. Find the equation of the locus of the mid-points of the ordinates of the

circle a:
2 + /y

2 = 36.

22. The ordinates of a curve are k times the ordinates of the circle x2 + ?/
2 = a2

.

Show that the curve is an ellipse if A; is a positive number different from 1 .

23. A line segment of length 12 moves with its ends always touching the coor-

dinate axes. Find the equation of the locus of the point on the segment which

is 4 units from the end, in contact with the x-axis.

24. A rod of length a+ b moves with its ends in contact with the coordinate

axes. Show that the point at a distance a from the end in contact with the z-axis

describes an ellipse if a ^ 6.
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25. The earth's orbit is an ellipse with the sun at one focus. The length of

the major axis is 186,000,000 miles and the eccentricity is 0.0167. Find the dis-

tances from the ends of the major axis to the sun. These are the greatest and

least distances from the earth to the sun.

6-8 The hyperbola. We return to the equation

Ax2 + Cy* + F =

and now specify that A and C are to be of unlike signs. The graph for

this case is called a hyperbola. If F has the same sign as C, the equation

may be written in a more convenient form for study :

We regard a and b as positive but make no restriction as to their compara-
tive values.

The graph of equation (10) is symmetric with respect to the coordinate

axes. The permissible values for x and y become evident when each is

expressed in terms of the other. Thus we get

x =
|
Vb* + y

2 and y =
^
Vz2 - a2

.

We see from the first of these equations that y may have any real value,

and from the second that x may have any real value except those for

which x2 < a2
. Hence the hyperbola extends indefinitely far from the

axes in each quadrant. But there is no part of the graph between the

lines x = a and x = a. This means that the hyperbola consists of two

separate parts, or branches (Fig. 5-15). The x-intercept points are

V'(-aff) and V(a,0), and are called vertices. The segment V'V is the

transverse axis. There is no ?/-mtercept, but the segment from B'(0,-b)
to B(Q,b) is called the conjugate axis. While the conjugate axis has no

point in common with the hyperbola, it has an important relation to the

curve, as we shall see. The intersection of the axes is called the center.

The hyperbola has associated with it two fixed points called the foci.

The foci of the hyperbola defined by equation (10) are F'(-c,0) and

F(c,0), where c2 = a2 + 62
. The difference of the distances from each point

of the hyperbola to the foci is a constant. The proof of this property
of the hyperbola may be made almost exactly as in the case of the ellipse,

and is left for the reader.

The chord through a focus and perpendicular to the transverse axis is

called a latus rectum. By substituting x = c in equation (10) and using
the relation c2 a2 + 62

,
the points (c,-6

2
/a) and (c,b

2
/a) are found to be

the extremities of a latus rectum. Hence its length is 262
/a.

It is important to note that the relation among the three quantities
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a, 6, and c as used in connection with the hyperbola is not the same as for

the ellipse. For the ellipse we chose a > b and defined c by the equation

c2 = a2 - 62
;
for the hyperbola c is defined by c2 = a2

4- b2 and no restric-

tion is placed on the relative values of a and b.

The hyperbola

b2 (11)

has its vertices at F'(0,-a) and F(0,a), and the foci are at F'(0,-c) and

F(0,c), where still c2 = a2 + 62
.

EXAMPLE. Find the equation of the hyperbola with foci at (0,5) and a

vertex at (0,3).

Solution. The location of the foci shows that the equation is of the form (11).

Using c = 5 and a = 3 in the relation c2 = a2 + fr
2

,
we find 62 = 16. Hence the

desired equation is

._._ 1

25 16

6-9 The asymptotes of a hyperbola. Unlike the other conic sections,

the hyperbola has associated with it two lines which are its asymptotes.
In this connection the quantity b, which seems to have no immediate

geometrical interpretation, becomes significant. To draw the asymptotes,
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we first construct the rectangle (Fig. 5-16) with a pair of sidei through the

vertices perpendicular to the transverse axis and the other sides through

(0, b) and (0,6). The extended diagonals of this rectangle are the asymp-
totes of the hyperbola of equation (10). To show that these lines are

asymptotes, we first consider the diagonal and the part of the hyperbola

extending into the first quadrant. The equations of the diagonal and this

part of the hyperbola are, respectively,

y --x and

We see that for any x > a the ordinate of the hyperbola is less than the

ordinate of the line. If, however, x is many times as large as a, the cor-

responding ordinates are almost equal. This may be seen more con-

vincingly by examining the difference of the two ordinates. Thus by
subtracting and changing the form, we get

b(x
- Vx* - a2

) = b(x
- Vx* - a2

)(s + Vx* - a2
)

a a(x + Vx2 - a2
)

ab

x + Vrr2 - a2

The numerator of the last fraction is constant. The denominator in-

creases as x increases, and can be made as large as we please by taking x

sufficiently large. Therefore the difference of the ordinates approaches
zero. Since the perpendicular distance from a point of the hyperbola to

the line is less than the difference in ^-values, the line is an asymptote of

the curve. From considerations of symmetry we conclude that the ex-

tended diagonals are asymptotes to the hyperbola in each of the four

quadrants. The equation of the other diagonal is of course y = -(b/d)x.

Similarly, the equations of the asymptotes of the hyperbola (11) are

FIGURE 5-16
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and
a

I'

We observe that for each of the hyperbolas (10) and (11) the asymptotes

may be obtained by factoring the left member and equating each factor

to zero.

The asymptotes are helpful in sketching a hyperbola. A rough draw-

ing can be made from the associated rectangle and its extended diagonals.

The accuracy may be improved considerably, however, by plotting the

end points of each latus rectum.

If a =
6, the associated rectangle is a square and the asymptotes are

perpendicular to each other. For this case the hyperbola is called equi-

lateral because its axes are equal, or is named rectangular because its

asymptotes intersect at right angles.

The ratio c/a is called the eccentricity e of the hyperbola. The angle of

intersection of the asymptotes, and therefore the shape of the hyperbola,

depends on the value of e. Since c is greater than a, the value of e is

greater than 1. If c is just slightly greater than a, so that e is near 1, the

relation c2 = a2 + b2 shows that b is small compared with a. Then the

asymptotes make a pair of small angles. The branches of the hyperbola,
enclosed by small angles, diverge slowly. If c increases, the branches are

enclosed by larger angles. And the angles can be made near 90 by taking

large values for e.

FIGURE 5-17
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EXAMPLE. Sketch the curve 36x2 -
64i/

2 = 2304.

Solution. Dividing by 2304 reduces the given equation to the form

- _^! = 1

64 36

Here a = 8, b = 6, and from c2 = a2 + 62
,
we find c = 10. The vertices therefore

are (8,0) and the foci are (10,0). Each latus rectum has a length of 9 units.

The equations of the asymptotes are 3x 4y = and 3x + 4y = 0. From this

information the hyperbola can be drawn (Fig. 5-17).

EXERCISE 5-3

For each hyperbola 1-8 find the coordinates of the vertices and foci, the length

of each latus rectum, and the equations of the asymptotes. Sketch each curve,

using the asymptotes.

1 _?.! _ t = 1 9 - ^ = 1

16 9 36 64

3 f. - * - 1 4 V* _ xl - I6t
9 4

~ L 4 '

9" 25
~ IB

* 2f _ l! _ i 6
* j -

i5<
4 21

"
20 16

" *'

7. ?/
- x2 = 36. 8. z2 -

*/

2 = 49.

Write the equations of the hyperbolas whose axes are on the coordinate axes,

and which also satisfy the conditions given in problems 9-16.

9. Vertex (4,0); end of conjugate axis (0,3).

10. Focus (6,0); vertex (4,0).

11. Focus (0,5); conjugate axis 4.

12. Conjugate axis 6; vertex (7,0).

13. Latus rectum 5; focus (3,0).

14. End of conjugate axis (3,0); length of latus rectum 10.

15. Passes through (6,5) and (8,2Vl5).

16. Passes through (3,\/2) and (2^,2).

6-10 Applications of conies. Many examples of conies have been dis-

covered in natural phenomena, and important applications of them abound

in engineering and industry.

A projectile, as a ball or bullet, travels in a path which is approximately
a parabola. The paths of some comets are nearly parabolic. Cables of

some suspension bridges hang in the form of a parabola. The surface

generated by revolving a parabola about its axis is called a paraboloid of

revolution. A reflecting surface in this form has the property that light

emanating at the focus is reflected in the direction of the axis. This kind

of surface is used in headlights, in some telescopes, and in devices to re-

flect sound waves. A comparatively recent application of parabolic metal
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surfaces is found in radar equipment. The surfaces reflect radio waves

in the same way that light is reflected, and are used in directing outgoing
beams and also in receiving waves from other stations.

The planets have elliptic paths with the sun at a focus. Much use is

made of semi-elliptic springs and elliptic-shaped gears. A surface of the

form made by revolving an ellipse about its major axis is so shaped that

sound waves emanating at one focus are reflected to arrive at the other

focus. This principle is illustrated in whispering galleries and other

buildings.

A very interesting and important application of the hyperbola is that

of locating the place from which a sound, as of a gun, emanates. From
the difference in the times at which the sound reaches two listening posts,

the difference between the distances of the posts from the gun can be

determined. Then, knowing the distance between the posts, the gun is

located on a branch of a hyperbola of which the posts are foci. The posi-

tion of the gun on this curve can be found by the use of a third listening

post. Either of the two posts and the third are foci of a branch of another

hyperbola on which the gun is located. Hence the gun is at the inter-

section of the two branches.

The principle used in finding the location of a gun is also employed by
a radar-equipped airplane to determine its location. In this case the

plane receives radio signals from three stations of known locations.

6-11 Standard forms of second degree equations. In our study of

conies thus far we have dealt with simple forms of the second degree

equation. Any conic, as we learned in Section 4-4, can be represented

by one of these special equations if the coordinate axes are located properly
with respect to the curve. We now know the location of the axes with

respect to the conies which are represented by the simple equations (5)-

(11). For the central conies (ellipse and hyperbola) the axes of the conic

are on the coordinate axes and the center and origin therefore coincide.

In the case of the parabola the axis is on one of the coordinate axes and the

vertex and origin coincide. In view of this information concerning conies

and the coordinate axes, we can interpret geometrically the transformations

by which second degree equations are reduced to the simple forms. The
rotation which removes the product term in the equation of a conic orients

the coordinate axes in the directions of the axes of a central conic (ellipse

and hyperbola) or, in the case of a parabola, makes one axis parallel to the

axis of the parabola. Having eliminated the product term, the transla-

tion to remove the first degree terms, or one first degree term and the con-

stant term, brings the origin of coordinates to the center of the central

conic and, in the case of the parabola, to the vertex.

The simplified forms of the equations of conies which we have used in

this chapter are of great advantage in drawing the graphs and studying
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their properties. However, it is necessary in many situations to deal

with equations in more complicated forms. The known quantities in a

given problem may lead to a second degree equation which at first is not

obtainable in simplified form. For example, the original information con-

cerning a body moving along a parabola may not give the location of the

vertex or the direction of the axis. To start the investigation the coor-

dinate axes would need to be chosen to fit the known quantities. Also,

a single problem may involve two conies whose axes are not in the same

directions and whose centers do not coincide.

Since it is sometimes necessary to deal with equations of conies which

are not in the simplest forms, we next consider equations whose forms are

more general. We begin with equations which have no xy term. In this

case a translation of axes would reduce an equation to one of the simple

forms. Hence we consider equations which would be reduced to the

simple forms by a translation of the origin to a point (ft,fc). We obtain

these equations from the simple forms by replacing x by x h and y by

y
- k.

(y
-

ft)
2 = 4a(x -

h), (12)

(x
-

h)* = 4a(y -
ft), (13)

(x
-

ft)
2 + (y

-
ft)

2 = a2
,

(16)

(16)

(* - W (v - ft)
2 _ i (a)

^ P
- * (il)

fl^ffi.fc^ffi.i. (!

These equations are said to be in standard forms. By translating the

origin to the point (fe,fc), each reduces to one of the simple forms. The

quantities a and b are unchanged in meaning. Constructing the graph
of an equation in one of these standard forms presents no greater diffi-

culty than drawing the graph of the corresponding simple form.

Equation (14), for example, represents an ellipse with its center at the

point (A,fc). The major axis has a length of 2a and is parallel to the s-axis.

The distance from the center to a focus is c, where c = a2 - 62
. If a = 6,

equation (14) reduces to the form (16), which represents a circle of radius a

with its center at (h,k).
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Equation (13) represents a parabola with a vertical axis and has only
one i/-value for each value of x. This fact is also evident when the equa-
tion is solved for y. Thus we obtain an equation of the form

y Ax* + Dx + F.

Here y is expressed as a quadratic function of x. We may now conclude
that a quadratic function of x has either a greatest or a least value, since

the graph is a parabola with a vertical axis. Hence an equation of the

form (13) displays the coordinates of the maximum or the minimum point
of the graph of a quadratic function of x. In Chapter 6 we shall develop
a general method for finding the maximum and minimum points of the

graphs of quadratic and certain other functions of a variable.

EXAMPLE 1 . Sketch the graph of the equation

t/
2 + Sx - 6</ + 25 = 0.

Solution. We recognize the equation as representing a parabola. The graph

may be more readily drawn if we first reduce the equation to standard form. Thus

2 - 60 + 9 = -8x - 25 + 9,

(y
-

3)
2 = -8(jr + 2).

The vertex is at (2,3). Since 4a = 8 and a = 2, the focus is 2 units to

the left of the vertex. The length of the latus rectum, numerically equal to 4a,

is 8. This means that the latus rectum extends 4 units above the focus and 4 units

below. The graph is constructed in Fig. 5-18.

FIGURE 5-18



78 THE SECOND DEGREE EQUATION [CHAP. 5

EXAMPLE 2. Find the equation of the ellipse with foci at (4, 2) and (10, 2) f

and a vertex at (12, 2).

Solution. The center, midway between the foci, is at (7, 2). The distance

between the foci is 6 and the given vertex is 5 units from the center; this makes

c - 3 and a = 5. Then 62 = a2 c2 = 16. Hence the desired equation is

(x
-

7)* (y + 2)*

25
^

16
1.

6-12 The addition of ordinates. The presence of an zy-term in the

equation of a conic usually makes the construction of the graph much
more difficult. Preparing a table of corresponding values of the variables

is tedious since, in general, a quadratic equation with irrational roots needs

to be solved for each pair of values. Another plan would be to rotate the

axes and use the new equation and the new axes to draw the graph. But

rotation transformations are not short and usually the process is compli-

cated by cumbersome radicals in the rotation formulas. For some equa-
tions the addition of ordinates method can be used advantageously. The

principle involved in this process is that the graph of the sum of two func-

tions can be obtained by adding the ordinates of the separate graphs of

the functions. The utility of the method depends on the ease with which

the separate graphs are obtained.

FIGURE 5-19

D

(4,10)
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EXAMPLE. Draw the graph of the equation

2x* - 2xy + i/
2 + 8z - I2y + 36 = 0.

Solution. To express y as the sum of two functions of x, we treat the equation

as a quadratic in y. Thus we have

/y
2 + (-2* - 12)y + (2r> + 8* + 36) =

0,

and solving for y gives

2* + 12 db V(-2x -12)2- 4(2x* + 8s + 36) , A
y = _ = a; + 6

We now draw the graphs of the equations

y = x + 6 and y = V4x x2
.

The locus of the first equation is a line. By squaring and then completing the

square in the z-terms, the second equation becomes (x 2)
2 + j/

2 = 4. The

graph is a circle of radius 2 and center at (2,0). The line and circle are drawn in

Fig. 5-19. The point D on the graph of the given equation is obtained by adding

the ordinates AB and AC. That is, AC is extended by a length equal to AB.

The addition of ordinates for this purpose must be algebraic. Thus MN is nega-

tive and the point Q is found by measuring downward from P so that PQ = MN.
By plotting a sufficient number of points in this manner the desired graph can be

drawn.

The graph, obtained from a second degree equation, is by definition a conic.

From the shape we conclude that the given equation represents an ellipse. In the

following section we show that this conclusion can be drawn immediately from

the equation itself.

6-13 Identification of a conic. The kind of conic represented by an

equation of the form

Ax* + Bxy + Cy* + Dx + Ey + F -

can be determined immediately from the coefficients of the second degree

terms. We already know how to identify the type of conic if B = 0. If

B 7* 0, we rotate the axes through an angle B (Section 4-4) and obtain

A'z'2 + B'x'ij' + C'y'* + D'x' + E'y' + F' -
0,

where

A' - A cos2 B + B sin cos 6 + C sin2 6,

B' =$cos 26 - (A
-

C) sin 26,

C' = A sin2 6 - B sin B cos + C cos2 0.

If B'2 - 4A /
C" is computed, the result, when simplified, is

This relation among the coefficients of the original equation and the trans-

formed equation holds for any rotation. For this reason the expression
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B2 - 4AC is called an invariant. By selecting the particular rotation

for which B' = 0, we have

-44'C' = B2 - 1AC.

With B 1 - the kind of conic represented by the transformed equation,

and therefore the original equation, can be determined from the signs of

A' and C". The conic is an ellipse if A' and C" have like signs, and a

hyperbola if the signs are different. If either A' or C' is zero, the conic is

a parabola. These relations of A' and C", in the order named, would

make ~4A'C" negative, positive, or zero. Hence we have the following

important theorem.

THEOREM. The graph of Ax2 + Bxy + Cy* + Dx + Ey + F =
0, when

it exists, is an ellipse, hyperbola, or a parabola according as B2 4AC is

negative, positive, or zero.

It must be remembered that in this theorem th.e degenerate conies

are included. These exceptional cases are indicated in the following

r6sum6:

B2 - 4AC < 0, ellipse or an isolated point,

B2 - 4AC > 0, hyperbola or two intersecting lines,

B2 - 44C =
0, parabola, two parallel lines, or one line.

EXERCISE 5-4

In each problem 1-4 write the equation of the circle which satisfies the given

conditions.

1. Center (2,-6); radius 5. 2. Center (0,0); radius 3.

3. Center (0,4); radius 4. 4. Center (-2,0); radius 7.

5. The segment joining A(0,0) and B(8, 6) is a diameter.

6. The segment joining A( 5,1) and #(7,5) is a diameter.

Reduce the equations 7-10 to standard forms. Sketch the graph in each case

by the use of the vertex and the ends of the latus rectum.

7. y
2 - I2x - 8y + 4 = 0. 8. z2 + I2x - 4.y + 36 = 0.

9. 4x2 + I2x - 16i/ + 41 = 0. 10. y*
- Ix + 21 = 0.

Find the equations of the parabolas determined by the conditions given in

problems 11-14, Sketch each parabola.

11. Vertex (2,3); focus (5,3). 12. Vertex (-2,1); focus (-2,-!).

13. Vertex (0,2); axis vertical; length of latus rectum 16.

14. Vertex (-2,1); axis horizontal; passes through (0,-4).

Reduce equations 15-18 to standard forms. In each find the coordinates of

the center, the vertices, the foci, and the ends of the minor axis. Sketch each

curve.
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15. 16x2 + 25i/
2 - 160z - 2(% + 400 = 0.

16. 9z2 + 25?/
2 - 36z - 189 = 0.

17. 3*2 + 2i/
2 - 24x + I2y + 60 = 0.

18. 4z2 + 8z/
2 + 4x + 24y - 13 = 0.

Write the equation of the ellipse which satisfies the conditions in each prob-

lem 19-22. Sketch each ellipse.

19. Center (5,1); vertex (5,4); end of minor axis (3,1).

20. Vertex (6,3); foci (-4,3) and (4,3).

21. Ends of minor axis (-1,2) and (-l,-4); focus (-1,1).

22. Vertices (1,3) and (5,3); length of minor axis 4.

Reduce equations 23-26 to standard forms. In each find the coordinates of

the center, the vertices, and the foci. Describe the locus of each equation.

23. 9*2 -
16*/

2 - 54x - 63 = 0.

24. 21x2 -
4*/

2 + 84r - 32z/
- 64 = 0.

25. 5?/
2 - 4j2 -

30.y
- 32z = 99.

26. 2//
2 - 3x2 - 8y + fa - 1 = 0.

Write the equations of the hyperbolas which satisfy the conditions given in

problems 27-30.

27. Center (1,3); vertex (4,3); end of conjugate axis (1,1).

28. Vertex (-4,0); foci (-5,0) and (1,0).

29. Ends of conjugate axis (3, 1) and (3,5); focus (1,2).

30. Vertices (1,3) and (5,3); length of conjugate axis 6.

Sketch the graph of each equation 31-36 by the addition of ordinates method.

31. y = x Vj. 32. y = 6 - x V4 - z2
.

33. y = 2x V5 + Qx - z2
. 34. ?/

2 - 2xy + 2.r2 - 1 = 0.

35. *2 - 2xy + if
- 4x - 12 = 0.

36. 2*2 + 2xy + if + Sx + 4y + 4 = 0.

Assuming that each equation 37-42 represents a nondegenerate conic, classify

each by computing I?2 4AC.

37. 2*2 - 4xy + 8y* + 7 = 0. 38. 3z2 + xy + x - 4 = 0.

39. 2jy-* + y-3 = 0. 40. z2 + 5xy + 15i/
2 = 1.

41. x* - if + 4 = 0. 42. x2 -
2xy + y* + 3x = 0.

43. 3x2 + Gxy + 3?/
2 - x + y = 0. 44. 4z2 - toy + t/

2 + 13 = 0.

45. Determine whether the equation x2
xy 2y* + x 2y = represents

a hyperbola or two intersecting lines by treating the equation as a quadratic in x

and solving for x in terms of y.

46. Solve the equation z2 + 2xy + ?/

2 2x 2y + 1 = for one variable in

terms of the other. Is the locus a parabola or a degenerate conic?
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47. Work out all the steps in showing that B" - 4A'C" * B2 - 4AC. Show

also that A' + C" = A + C.

Find the greatest or least value of each function 48 and 49. Draw the graph

and estimate the zeros of the function.

48. x2 - 7x + 4. 49. 5 - 2x - 2x\

50. Listening posts are at A, B, and C. Point A is 2000 feet north of point B,

and point C is 2000 feet east of B. The sound of a gun reaches A and B simul-

taneously one second after it reaches C. Show that the coordinates of the gun's

position are approximately (860,1000), where the z-axis passes through B and C
and the origin is midway between B and C. Assume that sound travels 1100 feet

per second.



CHAPTER 6

THE SLOPE OF A CURVE

6-1 An example. The graph of y = x* is shown in Fig. 6-1. Suppose
that we draw a line through the point P(l,l) of the graph and a neigh-

boring point Q of the graph with abscissa 1 + h. The ordinate of Q, ob-

tained by replacing x by 1 + h in the equation, is (1 -I- h)*. Hence the

slope of the line is given by

m .

(14- h)
-

\

The slope is thus expressed in terms of h. The quantity h may be assigned

any value except zero. This value is avoided because division by zero

is not permissible, and also because P and Q would then be the same point

and would not determine a line. Agreeing that h ^ 0, we substitute 1

for h/h in the expression for the slope, and have m = 2 4- h. While h must

not be zero, it may be as near zero as we please. A value of h near zero

makes the slope of the line through P and Q near 2. In fact, the slope

can be brought arbitrarily near 2 by taking h small enough. We see also

that when h is small Q is near P, and it can be made to take a position as

close to P as we please. Consider now the line through P with the slope 2

and denote the line by L. A line through P and Q can be obtained which

is arbitrarily near coincidence with L. This situation is described by say-

ing that as h approaches zero (or as Q approaches P) the line L is the limit-

FIGURE 6-1

83
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ing position of the line determined by P and Q. A line such as L is of

special significance and is given a name in the following paragraph.
Let P and Q be two points of a curve. The line through P and Q is

called a secant line. Keeping P fixed, let Q move along the curve and

approach P. The secant line will, in the curves which we shall study,

revolve about P and approach a limiting position as Q is brought arbi-

trarily close to P. The limiting position of the secant line is called the

tangent to the curve at the point P.

In accordance with this definition, the line through P (Fig. 6-1) with

slope 2 is tangent to the curve. The curve is also said to have slope 2 at P.

More generally, the slope of a curve at any point is defined to be equal to

the slope of the tangent at the point.

Still using the equation y = rr
2

,
we next let P(x,y) stand for any point

of the curve. If we take x + h as the abscissa of another point Q of the

curve, the corresponding ordinate is (x + h)
2

. The slope of the line

through P and Q (Fig. 6-2) is

,
A)

.

(x + K)
- x h ' h

Hence, if h /* 0, m = 2x + h. This slope can be made as near 2x as we

please by taking h small enough. Therefore we say that the line through
P with slope 2x is the tangent to the curve at P. Thus we see that the

slope of the tangent, and also the slope of the curve, at any point is twice

the abscissa of the point. This means that the curve has negative slopes

to the left of the origin, zero slope at the origin, and positive slopes to the

right of the origin. We see also that the curve gets steeper as x increases

numerically. The steepness of the curve is a measure of the rate of

change of the ordinate relative to a change in the value of the abscissa.

FIGURE 6-2
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By means of the slope expression we gain considerable information about

the graph.

In this chapter we shall make use of the slope in studying the character-

istics of the graph of a function. This is a fundamental and powerful

concept of mathematics.

6-2 Limits. In the preceding example we observed that (2x + h)h/h
can be made arbitrarily close to 2x by taking h small. The expression 2x

is said to be the limit of the original expression as h approaches zero. We
state this fact symbolically as

lim (2x + h) \ = 2x.
A-+O h

Although h approaches zero, we specify that it is not to be given the value

zero. This means that (2x + h)h/h is not equal to 2x, but can be made
as close as we please to 2x by choosing h small enough.

As a further illustration, we find the limit of

(x + h)*
- x3

h

as h approaches zero. Here the result is not immediately evident. The
limit can easily be found, however, if we first cube the binomial. Thus we
have

n

6-3 The derivative. Consider now the more general equation

-/(*>,

where the right member is some function of x. Let P and Q be two

points of the graph of the equation which have abscissas x and x + h.

The corresponding ordinates are f(x) and f(x + h). Hence the slope of the

line through P and Q (Fig. 6-3) is

f(x + h)-f(x) _f(x + h)-f(x)

(x + K)
- x

The line through P with slope equal to
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FIGURE 6-3

is called the tangent to the curve at P. The slope of the curve at P is

defined to be the slope of the tangent.

The name derivative is given to the limit just mentioned, and Dxf(x) is

one notation for the limit or derivative. That is,

Other notations for the derivative of f(x) in y = f(x) are

dx
' y', and -

dx

The derivative is a fundamental concept in calculus and has numerous

important applications. We shall make use of the derivative in the study
of a very restricted class of functions. A preliminary task in this con-

nection is the derivation of formulas by which the derivative of a func-

tion may be written at sight.

6-4 Derivative formulas. We first work out the derivative of axn
,

where a is a constant and n is a positive integer. From the definition of

derivative,

~ ,. a(x + h)
n axn

Dxaxn = lim -i
--

To evaluate the limit, we expand (x + h)
n
by the binomial theorem, collect

like terms, and divide the numerator and denominator by h. Thus

a(x + h)
n - axn a-- af

h \

x nx

= a
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The last expression has A as a factor in all terms except the first. Hence
the limit, as h approaches zero, of each term after the first is zero. The
limit of the sum of these terms is also zero. Hence we have

Dxaxn = naxn~l
. (1)

Notice that this formula permits us to write at once the derivative of a

constant times a positive integral power of x. We multiply by the expo-
nent and decrease the power of x by one unit. In terms of slope, this

means that the graph of y = axn has at any point (x,y) the slope naxn~l
.

If n =
1, formula (1) becomes

Dxax = ar = a.

The derivative for this case is constant, as would be expected, since y = ax

is a straight line with the slope a.

Illustrations. D,5z3 = 15x2
; D,(-2x4

)
= -8z3

; D*z
5 = 5x4

;
Dx 3.

We next find the derivative of a constant. That is, we let

C.

where C is a constant. This means that f(x) has the same value for all

values of x, and therefore f(x + h) = C. Hence

h h h

Since h approaches zero but is not to assume the value zero, the quantity

0/ft is zero for all permissible values of h. We therefore conclude that

DXC = 0. (2)

This result is in agreement with what we would expect, because the

derivative is the slope of the graph of the function. The graph of f(x)
= C

is a line parallel to the #-axis and the slope is zero at all its points.

An expression of the form

a<>x
n + aix

n~ l + a2:r
n-2

H-----h an-ix + an ,

where the a's are constants with a ^ 0, is a polynomial in x of the nth

degree. We now know how to write the derivative of each term of a

polynomial. The question then arises if the sum of the derivatives of the

separate terms is equal to the derivative of the sum of the terms. This

may be proved to be true. We shall make the assumption, omitting the

proof.
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We have established formula (1) for any positive integer n. In calculus

the formula is proved to hold for any real number n. We shall use the

formula for positive and negative integral exponents. The proof for a

negative integral exponent could be made by starting with the definition

of derivative and proceeding somewhat as in the case of a positive integral

exponent. We omit the proof, however.

EXAMPLE 1. Find the derivative of the polynomial

x* - 3^4 + 3.3
_ 7a

. + 5.

Solution. To find the derivative, we apply formula (1) to each term containing

x and formula (2) to the constant term 5. Hence

3z4 + x3 - 7x + 5)
= 20z4 - 12z3 + 3x2 - 7.

EXAMPLE 2. Write the derivative of 3or4 --H--- a: 3.
or

1 x

Solution. We change the fractional terms to 5ar3 and x~ l and apply formu-

las (1) and (2). This gives

Dz(3ar
4 - 5or3 + or 1 - x - 3) - -12*-' + l&r4 - x"2 - 1.

EXAMPLE 3. Find the slope of the curve

y = x3 - 3z2 + 4

at the point P(3,4). Write the equation of the tangent at this point.

Solution. We obtain the derivative (or slope expression) by using formulas (1)

and (2). Thus
Dxy = 3z2 - 6z.

The slope at the point P is obtained by substituting 3 for x in the derivative.

Hence the desired slope is 27 18 = 9. The equation of the line through (3,4)

with slope 9 is

9x - y
- 23 = 0.

EXERCISE 6-1

Find the limits indicated in problems 1-6.

1. lim(z'-4). 2.. .
--

x-*2 x->0 X + I

3. lim(2x-l). 4. Iim
2(x +

+
y-**. 6. Ii(-i-.-IH-h A-O \x + h xl h

Find/'(z) in each problem 7-20.

7. /(*) = 2x - 4. 8. /(x) - 5 - 6s.

9. /(*) = z3
. 10. f(x) = 5*3

.

11. f(x) - 3x2 - 4*. 12. /(*) - z8 - 4x2 +
13. /() = x-\ 14. /(x) - 5x- J + x.

15. /(x) - i-
16.
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= 3or4 - 5or2 + 2. 18. ~
x

19. f(x) = ~

In each equation 21-30 find Dzy and the equation of the tangent at the given

point.

21.

23.

; (1,1). 22. t/
= 3;(0,3).

25. y = x2 - 4x;(2,-4).

27. y = x4 - 4x2
; (2,0).

29. ?/
= x~4 + x4

; (x = -1).

24. y =
; (1,3).

26. ?/
= x3 - 6x2 + 8x; (0,0).

28. T/
= 2x~2 + 3x; (x = 2).

30. y = 1 + ? +
|;

(x = -2).

6-5 The use of the derivative in graphing. We now consider the de-

rivative as an aid in studying the behavior of functions and in constructing

their graphs. Before examining particular functions, however, we look

for the meaning of the sign of the derivative at a point of the curve. The

graph of //
=

f(x) is shown in Fig. 0-4, and tangents are drawn at the indi-

cated points A , B, (\ and D. If we think of a point as moving along the

curve from left to right, we notice that the moving point would be rising

at some positions and falling at others. At points on the curve where the

moving point is rising, we say that y is an increasing Junction of x. That

is, y increases as x increases. At points where the moving point is falling,

y is a decreasing function. At .4 the function f(x) is an increasing func-

tion. Here the slope of the curve, Dxy, is a positive number. The func-

tion is decreasing at f, and the derivative is negative. The slope, and

also the derivative, is zero at B and D. The points B and D separate

rising and falling portions of the curve. We conclude that a positive

derivative at a point indicates that the point is on a portion of the curve

which rises toward the right. That is, the function increases as x in-
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creases. A negative derivative indicates a decreasing function; the curve

falls toward the right.

EXAMPLE 1. Find the values of x for which the graph of 5 + 4z x2 has

positive slopes, zero slope, or negative slopes.

Solution. We let y stand for the function and write

y = 5 + 4* - x\

For the derivative, we have

Dxy = 4 - 2x = 2(2
-

z).

We note that the derivative is equal to zero when x = 2, is positive for x < 2,

and is negative for x > 2. That is,

Dxy > 0, when x < 2,

Dxy =
0, when x =

2,

Dxy < 0, when x > 2.

Since the derivative expression gives the slope of the graph of the function,

we see that the graph has positive slopes to the left of x -
2, zero slope at x =

2,

and negative slopes to the right of x = 2. This tells us that the curve is rising

at points to the left of x = 2 and falling at points to the right of x = 2. Hence

the graph has its greatest height at x 2. Substituting 2 for x in the given

function, we find the functional value, ?/, to be 9. Hence the point (2,9) is the

peak point of the graph, and 9 is the greatest value of the given function.

Noticing the derivative 2(2 x) further, we observe that at a point far to the

left of x = 2 the derivative is a large number, indicating that the curve is steep.

Similarly, the curve gets steeper and steeper as x increases beyond 2. The steep-

ness of the curve gives a measure of the rate of change in y relative to an increase

in x.

B(2,9)

FIGURE 6-5
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This examination of the derivative furnishes information which is helpful in

drawing the graph (Fig. 6-5).

EXAMPLE 2. Examine the function x* 6x2 + 9z 1 and construct its graph.

Solution. Letting y stand for the function, we have

y = x9 6z2 + 9x 1

and then

Dxy
- I2x + 9 -

3).

We see at once that the derivative is zero when x 1 and when x = 3. To find

the intervals of positive and negative slopes, we first notice the signs of the factors

x 1 and x 3 of the derivative. The factor x 1 is negative if x < I and

positive for values of x > 1 . The factor x 3 is negative for x < 3 and positive

if x > 3. Both factors are negative to the left of x =
1, and hence their product

is positive. For x between 1 and 3, x 1 is positive and x 3 is negative, giving

a negative product. Both factors are positive to the right of x = 3. We write

this information in the following symbolic form.

Dxy =
0, when x =

1,

Dxy = 3(+)(-) < 0, when 1 < x < 3,

Dxy =
0, when x =

3,

Dxy = 3(+)(+ ) > 0, when x > 3.

We now interpret this information relative to the graph. Since the derivative

is positive for x < 1
,
the curve to the left of x = 1 is rising toward the right. The

negative derivative at points between 1 and 3 signify a falling curve. The deriva-

tive is zero at x = 1
,
and this point separates rising and falling portions of the

curve. Hence the graph is higher at x = 1 than at points to the left or at points

just to the right. The corresponding ordinate is 3, and therefore the point A (1,3)

is a peak point. Similarly, the derivative is negative at points between x = 1

FIGURE 6-6



92 THE SLOPE OP A CURVE [CHAP. 6

and x = 3, is zero at x = 3, and is positive at points to the right of x = 3. When
x =

3, y = 1, hence the point 5(3, 1) of the graph is lower than those immedi-

ately to the left and lower than those to the right. The curve gets steeper and

steeper as points are taken farther and farther to the left of A, and the steepness

also increases as x increases beyond 3.

With the preceding information and just a few plotted points a good graph

can be constructed (Fig. 6-6).

6-6 Maximum and minimum points. In the two preceding problems
we found points of the curves where the slope is zero. Each of these

points marks the transition from positive to negative or negative to posi-

tive slopes. In other words, each is a high or low point compared with

those nearby. The location of these points helped tremendously in draw-

ing the graphs. Later we shall see that the points which separate rising

and falling portions of the curve are of special significance in applied

problems. We wish now to give names to points of this kind and to out-

line a procedure for finding them.

A function y = f(x) is said to have a relative maximum at x = a if the

value of f(x) is greater when x = a than when x has values slightly less

or slightly more than a. More specifically, f(x) has a maximum at x = a if

f(a)>f(a + h)

for all negative and positive values of h sufficiently near zero. This situa-

tion is pictured in Fig. 6-7 by the point A . The value of the function at

the point A is greater than its values at neighboring points both to the

left and right. The value at A
, however, is not the greatest of all values

of the function, since a part of the curve extends higher than A. The
word relative is used to indicate that the ordinate of a maximum point is

considered relative to the ordinates of neighboring points. The greatest

of all values which a function has in its range is sometimes called an

absolute maximum. For example, the function pictured in Fig. 6-5 has

an absolute maximum at the point B.

The function f(x) has a relative minimum at x = a if

/(a) <f(a + h)

for all values of h close enough to zero. If the inequality holds for all

positive and negative values of ft, the minimum is an absolute minimum.
A minimum point is shown at JB. Here the slope of the curve is zero. The

point B is a transition point from negative to positive slopes.

At C the slope is zero, but this is neither a maximum nor a minimum
point. We notice that the slope immediately to the left is positive and
is also positive to the right. Hence the tangent at C cuts through the

curve and the slope does not change in sign as x increases through this

point.
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B
FIGURE 6-7

From Fig. 6-7 we may, intuitively at any rate, outline a procedure for

finding the maximum and minimum points of the graph of a function.

1. Set the derivative equal to zero to find the abscissas of points where the

slope is zero.

2. Suppose the slope is zero atx-a. Determine the sign of the derivative

for values of x slightly less than a and the sign for values slightly more than a.

3. // the sign changes from positive to negative in passing from the left

to the right, the function has a maximum at x = a. If the sign changes from

negative to positive, the function has a minimum at x - a. The maximum or

minimum is the value of the function when x - a. If the sign does not change,

the function has neither a maximum nor a minimum at x - a.

FIGURE 6-8 FIGURE 6-9
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EXAMPLE 1. Show that the slope of y = x3 + x is everywhere positive.

Solution. We find

Dxy - 3x2 + 1.

The derivative is positive for all real values of x. Figure 6-8 shows the graph.

EXAMPLE 2. Find and test for maximum and minimum values the points of

zero slope of

y = x4 -6x2 + 8x + 11.

Solution. Taking the derivative, we find

Dxy = 4x3 - 12x + 8 = 4(x
3 - 3x + 2)

= 4(x + 2)(x
-

I)
2

.

The slope is zero at x = 2 and x = 1. We notice that the derivative is nega-

tive for values of x less than 2 and positive for values of x slightly greater than

2. Hence the function has a minimum value when x = 2. The minimum

value, found by substituting 2 for x, is 13. The factor (x I)
2 is positive

for all values of x except 1. The slope of the curve, therefore, does not change

sign in passing through x = 1. The tangent line (Fig. 6-9) cuts through the

graph at (1,14).

EXERCISE 6-2

Find the coordinates of points of zero slope in problems 1-14. Tell in each

case if the point is a maximum or minimum point. Give the intervals of positive

and negative slopes. Draw the curves.

1. y = 2 - x2
. 2. y = x2

.

3. y = x2 - 4x. 4. y = 2x2 - 2x.

5. y = 1 + 6x - x2
. 6. y = 1 + 2x - ix

2
.

7. y = -x3
. 8. y = x3 + 3x.

9. y = Jx
3 - x2 + x. 10. y = x3 - 6x2 + 9x - 3.

11. y = 2x3 + 3x2
. 12. y = 3x2 - x3

.

13. y = x3 - 3x2 + 4. 14. y = 2 + 3x - x3
.

Find the coordinates of the points of zero slope, and make a rough sketch of

the graph in problems 15-22.

15. y = 3x4 - 4x3
. 16. y = x4 + 2x2

.

_ x4 2x3 x2
, 1 10 x4 x3 x2

". y - T
- T +

2
+ 1. ^ y - T

"
3
-

2
+ *

19. y = - x8 + x2 + 1. 20. y = x4 - 2x2 + 1.

6-7 Applications. There are many practical problems whose solutions

involve maximum and minimum values of functions. The following

examples illustrate the procedure for handling some problems of this kind.
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EXAMPLE 1. A farmer has 600 rods of fencing. He wishes to enclose a rec-

tangular pasture and divide the area into two equal parts by a fence parallel to

two opposite sides. Find the dimensions of the pasture if the area is to be a maxi-

mum.

Solution. Wo let x and // stand for the dimensions (Fig. 6-10). We note that

by choosing the //-dimension near 300 the x-dimension would be near zero, giving

a very narrow rectangle of little area. By letting x increase from near zero to a

length near 200, the shape of the rectangle would vary and again become quite

narrow, with the //-dimension near zero. Hence we suspect that the area is greatest

for jc somewhere between and 200.

If .4 indicates the area, we have

A = xy.

It is desirable to obtain A in terms of one variable, either x or ?/. Hence we next

find a relation between x and //. From the figure, 3r 4- 2y is the total length of

the fence. Therefore

3x + 2//
= 600, and y = 300 - $x.

Substituting for ?/, we have

A = x
(300

-
y)

= 300* - I x2
.

To find the value of x which makes A a maximum, we set DZA = and solve

for x. Thus

DtA = 300 - 3*,

300 - 3x =
0, and x = 100.

When x = 100, y = 150, and A = 15,000 square rods. From the nature of the

problem, we surmise that the area is a maximum for these dimensions. This may
be verified by noting that the derivative is positive for x less than 100 and nega-

tive for x greater than 100.

The function 300x - fx
2

is a complete parabola if x is not restricted in value.
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FIGURE 6-11

100 200

In our problem, however, x may take only the values between and 200. The

graph for this range of x is drawn in Fig. 6-11.

EXAMPLE 2. A cylindrical can without a top is to have a capacity of lOOOir

cubic inches. Find the radius and height if the amount of material is to be a

minimum.

Solution. If we let x stand for the radius, y for the height, and S for the cylin-

drical area plus the area of the circular bottom, we have

S = Trz2 + 2*xy.

To express S in terms of one variable, we substitute the value of y in terms of x.

We have

wty =
10007T, and y = ^,

and hence

20007T

DXS = 2wx -
- 1000

We see that DZS 0, when x = 10. The corresponding value of \j is 10. The

least amount of material is required when the radius is 10 inches and the height

also 10 inches.

EXERCISE 6-3

1. What is the largest rectangular area which can be enclosed with 400 yards
of fence?

2. Divide the number 8 into two parts such that the sum of their squares is

a minimum.

3. A rectangular pasture is to be fenced along four sides and divided into

three equal parts by two fences parallel to one of the sides. Find the greatest

area if 800 yards of fence are to be used.

4. A rectangular plot is to contain 5 acres (800 sq. rds.) and to be fenced off

along a straight river bank. What dimensions will require the least amount of

fencing? No fence is used along the river.
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5. A rectangular box is to be made from a sheet of tin 8 inches by 12 inches

by cutting square pieces from each corner and then turning up the sides. For

what depth will the volume of the box be a maximum?

6. A box with a square base and open top is to be made from 27 square feet

of material. Find the dimensions if the volume is to be a maximum.

7. An uncovered rectangular water tank is to be lined with sheet copper. If

the tank is to hold 108 cubic feet of water and the base is a square, find the dimen-

sions for a minimum amount of sheet copper.

S. A closed cylindrical can is to be made from 24ir square inches of sheet tin.

Find the radius and height in order for the volume to be a maximum.

0. A closed cylindrical can is to be made to contain 16?r cubic inches. What
should bo the radius and height for the amount of tin to be a minimum?

10. A window is formed by a rectangle surmounted by a semicircle and has a

perimeter of 12 foot. Find the dimensions to admit the most light.

1 1 . The combined length and girth of a parcel post package must not exceed

100 inches. What is the volume of the largest box with a square base that can

be sent by parcel post?



CHAPTER 7

TRANSCENDENTAL FUNCTIONS

7-1 Introduction. An equation in which all terms are of the form

axmy
n

,
where a is a constant and each exponent is a positive integer or

zero, is an algebraic equation in x and y. Either variable may be regarded

as an algebraic function of the other. The functions which we have

studied are algebraic. In this chapter we shall take up functions which

are not algebraic. Functions which are not algebraic are classed as trans-

cendental. The most common transcendental functions, and those which

we shall study, are the trigonometric, the inverse trigonometric, the ex-

ponential, and the logarithmic functions. These functions are of tre-

mendous importance; they are used extensively in physics, engineering,

probability, and statistics.

7-2 The trigonometric curves. Before constructing the graphs of the

trigonometric functions we shall point out a certain property which these

functions possess. A function f(x) is said to be periodic if there is a con-

stant p such that for all values of x

/(*)-/(* + ?).

The smallest positive value of p for which this is true is called the period.

The trigonometric functions are periodic. The sine function, for example,
satisfies the equations

sin x = sin (x + 2-ir)
= sin (x + 2n?r),

where x is any angle in radians and n is an integer. Thus the values of the

sine of an angle recur in intervals of 2w radians. This recurrence does not

take place in smaller intervals, and hence 2ir is the period of the sine func-

tion. This is also the period of the cosine, secant, and cosecant of an

angle. The period of the tangent and cotangent of an angle is TT. For

these functions we have the identities

tan x = tan (x + TT) and cot x = cot (x + IT).

In drawing the graph of a trigonometric function, advantage should be

taken of its periodic nature. If the graph is obtained for an interval

equal to its period, then this part of the graph can be reproduced in other

intervals to the right and left. To plot points for drawing the curve over

an interval of one period, the values of the function corresponding to

values of the angle can be had from a table of trigonometric functions

(see Appendix).
98
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y = sin x

FIGURE 7-1

y = cos x

FIGURE 7-2

FIGURE 7-3
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Figures 7-1 and 7-2 show the graphs of y = sin x and y = cos x. Each

of these curves crosses the x-axis after every IT radians of re-values. The
ordinates of each vary from 1 to 1. These are called the extreme values,

and the constant 1 is called the amplitude.

The tangent curve (Fig. 7-3) crosses the avaxis at integral multiples of

v radians and has asymptotes at odd integral multiples of T radians.

Amplitude is not defined for the tangent.

The secant curve (Fig. 7-4) has no x-intercepts. The asymptotes occur

after every TT radians of z-values.

We next consider the function a sin bx, where a and b are constants.

Since the extreme values of sin bx are 1 and 1, the extreme values of

a sin bx are a and a. The amplitude is equal to the absolute value of a.

To find the period, we determine how much x changes in producing a

O

y = sec x

FIGURE 7-4

y = 3 sin 2x

FIGURE 7-5
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change of 2v in the angle bx. As x varies from to 2ir/6, the angle bx

increases from to 2ir. Hence the period of sin bx is 2-ir/b. As an illus-

tration, 3 sin 2x has an amplitude of 3 and a period of TT. The graph of

y = 3 sin 2x is drawn in Fig. 7-5.

7-3 The inverse trigonometric functions. The graphs of the inverse

trigonometric functions may be obtained readily from the graphs of the

direct functions. To draw the graph of y = arc sin z, for example, we
recall that the equations

y arc sin x and x = sin y

y - arc sin x

FIGURE 7-6

y arc cos x

FIGURE 7-7
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express the same relation between x and y. Hence the graphs of these

two equations must coincide. The equations

x = sin y and y = sin x

have x and y interchanged. The graph of y = sin x (Fig. 7-1) winds

along the or-axis. We conclude, therefore, that the graph of x = sin y

is a curve of the same form winding along the ?/-axis. The graph of

x = sin T/, or y = arc sin x, is shown in Fig. 7-6.

The graphs of each of the other inverse functions can be found similarly

from the graph of the direct function by reversing the roles of x and y.

Figures 7-7 and 7-8 show the graphs of y = arc cos x and y = arc tan x.

EXERCISE 7-1

Find the period of each function 1-12. Give the amplitudes of the sine and

cosine functions.

1. cosSx.

4. 2 cos 4x.

7. secGx.

10. SCOSTTX.

2. sinjx.

5. tan 5x.

8. cos7x.

11.

3. sinjz.

6. cot is.

9. tanfz.

12. sec (is +
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Sketch the graph of each equation 13-24.

13. //
= 3 cos x. 14. y = 2 sin x.

16. u = cos2x. 17. y = tan 2x.

19. //
= 3 sin x. 20. //

= 4 tan j.

22. //
= tan Jx. 23. //

= esc x.

15. y = sin 3z.

IS. y = cot a:.

21. y + 4 sin fa;.

24. y = 5 sin 4z.

Draw the graphs of the inverse trigonometric equations 25-30.

25. //
= 2 arc cos X. 26. y = 3 arc sin x.

27. //
= 2 arc tan x. 28. ?/

= J arc cos ^x.

29. //
= 3 arc sin %x. 30. y = arc tan 2x.

7-4 The exponential curves. An equation in which a variable or a

function of a variable is an exponent is called an exponential equation. The

corresponding graph is known as an exponential curve. The equations

and = 10'

are simple exponential equations. Each could be made more general by
replacing the exponent by a less simple function of x.

The letter c in the second equation stands for an irrational number

approximately equal to 2.71828. This number is of great importance in

FIGURE 7-9
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advanced mathematics, and exponential functions involving e as a base

have wide applications in both theory and practice.

The graph of y = e* can be drawn by using the table (see Appendix) to

find values of y for assigned values of or. Corresponding values of y in

the equations y = 2J and y = 10X are simply obtained when x is an integer.

To determine other pairs of values a table of logarithms can be used.

Figure 7-9 has the graph of the three equations drawn in the same coordi-

nate system for purposes of comparison.

7-5 Logarithmic curves. If a is a positive number different from 1 and

y is any real number in the equation av = z, then y is called the logarithm

of x to the base a. This relation may be written symbolically as y = loga x.

Thus the two equations

and y = loga xa* = x

express the same relation among the numbers a, ,
and y. The first is in

exponential form and the second in logarithmic form. Since the base a is

positive, av also has a positive value. Hence we shall consider the loga-

rithms of positive numbers only.

Since a logarithmic equation can be changed to an exponential equa-

tion, it appears that logarithmic and exponential curves must be closely

related. To see the relation, we note that the logarithmic equation

y = logfl x is equivalent to, and therefore has the same graph as, x = av
.

Now the equations

x = av and y = a*

are alike except that x and y play reverse roles. Hence their graphs must

have the same form but different positions relative to the coordinate axes.

/7\ 2345678

FIGURE 7-10
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The most frequently used bases for logarithms are the numbers 10 and e.

A table of logarithms can be used for drawing the curve corresponding to a

logarithmic equation employing either of these bases. Corresponding

values of x and y for the equations y = log x and y = log,, x are here tabu-

lated with the logarithmic values rounded off to one decimal place. These

should be verified by referring to the tables in the Appendix. The graphs
are drawn in Fig. 7-10.

EXERCISE 7-2

Sketch the graphs of the following equations:

1. y = 4'.

4. y = e
2
*.

7. //
= 22*-'.

10. //
= 3 logm x.

12. //
= Iog 10 (-.r).

14. //
=

log, 4.r.

16. //
= logo j.

2. y = 4-'. 3. y = 2e*.

5. //
= c

r
'. 6. y = (>'**.

8. y = 2*
2
~*. 9. y = are*.

11. //
= 2 log,*.

13. y = logc (-j).

15. y =
log,, a-

2
.

17. //
= Iog10 (:r

-
3).

18. Show that the graph of //
= loga bx is the graph of //

= loga x shifted verti-

cally a distance of log,, b.

19. Show that the graph of //
=

log,, x
2 can be obtained by doubling each ordi-

nate of ?/
= loga j.

20. If S100 is invested at 2% per year compounded continuously, the accumu-

lated amount // at the end of x years is given by the equation

y = lOOe002*.

Sketch the graph of this equation and from the graph estimate the accumulated

amount at the end of (a) 3 years, (b) 6 years, (c) 9 years. Estimate also the

time required for the original investment to double.

7-6 The graph of the sum of two functions. The addition of ordinates

method can sometimes be efficiently applied to draw the graph of the sum
of two functions in which one or both are transcendental. The process is

exactly that used in Section 5-12 and is illustrated by the following example

involving a transcendental function,

EXAMPLE 1. Sketch the graph of the equation

y = Vx + sin x.

Solution. We first draw the graphs of

y Vx, and y = sin x.
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FIGURE 7-11

The locus of the first of these equations is the upper half of the parabola ?/

2 =
x,

and the second yields the sine curve; both are familiar and easily sketched. The

two curves are shown in Fig. 7-11. The point D on the graph of the given equa-

tion is obtained by adding the ordinates AB and AC. That is, AC is extended

by a length equal to AB. The addition of ordinates for this purpose must be

algebraic. Thus MN is negative and the point Q is found by measuring down-

ward from P so that PQ = MN. By plotting a sufficient number of points in

this way the desired graph can be drawn.

EXERCISE 7-2

Sketch the graph of each of the following equations by the addition of ordi-

nates method.

1. y = x + sin a-.

3. y = Vx + cos x.

5. y = sin x + cos 2ar.

7. y = x + logic x.

9. y =
i(e* + e~x).

2. y
= x cos x.

4. y
= sin x + cos x.

6. y
= 2 sin x + sin 2x.

8. y = x + e*.

10. y = e' + logio x.



CHAPTER 8

EQUATIONS OF CURVES AND CURVE FITTING

8-1 Equation of a given curve. Having obtained curves as the graphs
of equations, it is natural to surmise that a curve in a plane has a corre-

sponding equation. We shall first consider the problem of writing the

equation of a curve all of whose points are definitely fixed by certain given

geometric conditions. The graph of the resulting equation should be

in exact agreement with the given curve. In other words, the equation
of a curve is a relation between x and y which is satisfied by the coordi-

nates of all points, and only those points, which belong to the given curve.

In the latter part of this chapter we shall consider the problem of find-

ing the equation when the original information locates certain points

(usually a few) but does not establish any particular curve.

EXAMPLE 1. A point moves so that its distance from the fixed point F(2,Q)
divided by its distance from the //-axis is always equal to J. Find the equation
of the locus of the moving point.

Solution. We select a typical point P of the path (Fig. 8-1). Then 2FI> = DP
expresses the required relation between the distances. In terms of the coordinates

jc and // of the variable point P, this relation is

or, by simplification,

2\ (x
-

2)* -f //'

4y/'
- Iftr + 16 = 0.

This is the equation of an ellipse, since .r
2 and //- have unequal coefficients of the

same sign.

Y

D

O F(2,0)

FIGURE 8-1

107
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EXAMPLE 2. Find the equation of the circle which passes through the points

(-2,-2), (5,-3),and(2,l).

Solution. The equation of the circle can be written in the form

s* + y* + Dx + Ey + F = 0.

Our problem is to find values for D, E, and F so that this equation is satisfied by
the coordinates of the given points. Hence we substitute for x and y the coordi-

nates of these points. This gives the system

4 + 4 _ 2D - 2E + F =
0,

25 + 9 + 5D - 3E + F =
0,

4+l + 2D + + P = 0.

The solution of these equations is D =
3, E =

5, and F = 4. Therefore the

required equation is

x* + y*
- 3x + 5y - 4 = 0.

EXERCISE 8-1

In each problem 1-14 find the equation of the locus of P(x,y) which satisfies

the given condition.

1. P is 5 units from the fixed point (2, 3).

2. P is equidistant from (2, -4) and (-1,5).

3. The abscissa of P is equal to its distance from the point (3,2).

4. P is on the circle with center at (3, 2) and which passes through (6,2).

5. P is the vertex of a right triangle whose hypotenuse is the segment joining

(-5,0) and (5,0).

6. The sum of the squares of the distances between P and the points (4,2)

and (-3,1) is 50.

7. P is twice as far from (0,3) as from (3,0).

8. P is three times as far from (1,1) as from (3,4).

9. P is equidistant from (8,1) and the ly-axis.

10. P is twice as far from the x-axis as from (0,3).

11. P is twice as far from (5,0) as from the y-axis.

12. The sum of the distances from P to (0,-3) and to (0,3) is 10.

13. The difference of the distances from P to ( 5,0) and to (5,0) is numerically

equal to 8.

14. The angle APB = 45, where A and B are the points (-1,0) and (1,0).

15. A point moves so that its distance from a fixed point divided by its dis-

tance from a fixed line is always equal to a constant e. Find the equation of the

path of the moving point. Suggestion: Take the y-axis along the fixed line and
the z-axis through the fixed point, say (fc,0). From the resulting equation observe

that the path is a parabola if e = 1, ati ellipse if e is between zero and 1, and a

hyperbola if e is greater than 1. Show that for e * 1 the z-intercepts (vertices)

are k/(\ + e) and k/(l
-

e). Where is the center of the conic? Divide the dis-
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tance between the center and (fc,0) by the distance between the center and one

of the z-intercept points. Do you conclude that (A;,0) is a focus and e is the

eccentricity?

16. Find the equation of the circle which passes through the points (3,0),

(4,2), and (0,1).

17. Find the equation of the circle which passes through (0,0), (5,0), and (3,3).

18. Find the equation of the parabola y = ax2 + bx + c which passes through

(0,6), (-1,2), and (-2,6).

19. Find the equation of the parabola y
- ax2 + bx + c which passes through

(0,0), (l,-l),and(-l,5).

8-2 Equation corresponding to empirical data. We now take up a

much different and more difficult aspect of the problem of finding equa-
tions representing known information. Here the problem is not primarily

of geometric interest but one in which analytic geometry is fruitful in

aiding the scientist. Experimental scientists make observations and

measurements of various kinds of natural phenomena. Measurements in

an investigation often represent two variable quantities which are func-

tionally related. In many situations the study can be advanced through
an equation which expresses the relation, or an approximate relation,

between the two variables in question. The equation can then be used

to compute corresponding values of the variables other than those ob-

tained by measurement. The equation is called an empirical equation,

and the process employed is called curve fitting.

Suppose, for example, that various loads are placed at the mid-point of

a beam supported at its ends. If for each load the deflection of the beam
at its mid-point is measured, then a series of corresponding values are ob-

tained. One value of each pair is the load and the other the deflection

produced by the load. The table gives readings where x stands for the

load in pounds and y the deflection in inches. Taking the loads as abscissas

and the deflections as ordinates, the pairs of values are plotted as points

in Fig. 8-2. The points lie almost in a straight line, and suggest that the

deflection is a linear function of the load. That is, an equation of the form

y = mx + b

gives the relation, or an approximate relation, between the load and the

deflection. Since the points are not exactly in a straight line, no linear

equation can be satisfied by all pairs of the readings. We are then faced

with the problem of selecting a particular linear equation. A line could

be drawn by sight so that it passes quite close to each point. It is de-
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sirable, however, to follow some procedure which will locate a definite

line. In the next section we shall discuss a method of determining a line

which is called the best fitting line for a set of data.

If the points representing a set of data are not approximately in a

straight line, a linear equation will not express well the relation between

the variables. It would then be necessary to use some nonlinear relation

in looking for a satisfactory equation. The most common nonlinear func-

tions are the polynomial, trigonometric, inverse trigonometric, exponen-

tial, and logarithmic functions. A set of data might be represented by
one of these functions or a combination of them. Thus the first step in a

curve fitting problem is the selection of some type of function. The
second step is the determination of some particular function of the type
selected which will furnish a satisfactory representation of the data. We
shall deal with the second part of the problem by employing a process
called the method of least squares. The first step, namely, the choice of a

type, will be considered later.

8-3 The method of least squares. Suppose that we have given n

points in a plane whose coordinates are (zi,2/i), (#2,2/2), , (#n,2/n). We
define the residual of each of the points relative to a curve as the ordinate

of the point minus the ordinate of the curve for the same z-value. The

totality of residuals may be examined to determine if the curve is a good
fit to the points. A curve is considered a good fit if each of the residuals

is small. Since some of the residuals could be positive and others nega-

tive, their sum might be near zero for a curve which is a poor fit to the
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points. Hence the sum of the residuals would not furnish a reliable

measure of the accuracy of fit. For this reason we shall deal with the

squares of the residuals, thus avoiding negative quantities. If the sum
of the squares of the residuals is small, we would know that the curve

passes close to each of the n points. The better fitting of two curves

of the same type is the one for which the sum of the squares of the residuals

is smaller. The best fitting curve of a given type is the one for which the

sum of the squares of the residuals is a minimum.

Starting with the simplest situation, we shall show how to determine

the best fitting line to the n given points. We write the linear equation

?/
= mx + 6,

where values are to be found for m and b so that the sum of the squares

of the residuals of the n points is a minimum. The residual of the point

(ri,.Vi) is //i (mx\ + fo). The quantity y\ is the ordinate of the point,

and (mx\ + b) is the ordinate of the line when x = XL Hence the residuals

of the points are

+ 6), ?/2
-

(tt?:r2 + 6), , ?/
- (mxn + 6),

and their squares are

/i
2 -

//2
2 -

2/WJ2//2
-

2//2& + w?W + 2m.r26 + 62
,

//n
2 - 2mxn ijn

-
2//n6 + m 2xn

2 + 2mxnfc + b2
.

To express the sum of these expressions in a convenient form, we use

the following notation.

J2//2 H-----H XnUn-

Denoting the sum of the squares of the residuals by /?, we have

R = iy - 2m2xy - 2b2y + m*2x2 + 2mb2x + n62
.

We notice that all quantities in /? are fixed except m and b. For example,

2/y
2
is not a variable; it stands for the sum of the squares of the ordinates

of the n fixed points.

Our problem now is to determine values for m and b which make R a

minimum. The expression for R contains the first and second powers of

both m and b. If 6 is assigned any value whatever, then R is a quadratic

function of m. Hence the graph of the function is a parabola. Choosing

the m-axis as horizontal and treating b as an unspecified constant, the

parabola has a vertical axis and extends upward. The parabola opens

upward because /?, being the sum of squared expressions, is not negative.
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Consequently the least value of R is the ordinate of the vertex. If we
set ra equal to its value at the vertex, a relation is obtained which must be

satisfied in order that R shall be a minimum. This equation, as we shall

see, involves both m and b. In a similar way, considering R a quadratic

function of 6, a second relation between m and 6 may be obtained. The
simultaneous solution of these equations yields formulas for m and b.

In Section 5-11 we learned how to find the coordinates of the vertex

of a parabola. We also learned, in Chapter 6, that differentiation may
be applied to find maximum and minimum points of a graph. The differ-

entiation process is employed below. As an exercise, the reader might
work through the alternative method.

First, treating 6 as constant, we find DmR. Next, we differentiate to

obtain DbR, where m is considered constant. These derivatives, by the

procedure of Section 6-6, are to be equated to zero. Thus we have

DmR = -22xy + 2m2z2 + 262x =
0,

DbR = -227/ + 2m2z + 2nb = 0.

Solving these equations simultaneously for m and 6, we have

-
- (2x)

2
'

n2x2 - (2x)
2

These formulas enable us to compute m and b for the line of best fit to

a set of given points. We illustrate their use in an example.

EXAMPLE. Find the line of best fit to the data plotted in Fig. 8-2.

Solution. For these data n 6, and computing the required sums appear-

ing in formulas (1), we obtain

2z = 100 + 120 + 140 + 160 + 180 + 200 = 900,

Zy = 0.45 + 0.55 + 0.60 + 0.70 + 0.80 + 0.85 =
3.95,

2z2 = 1002 + 1202 + 1402 + 1602 + 1802 + 2002 = 142,000,

100(.45) + 120(.55) + 140(.60) + 160(.70) + 180(.80) + 200(.85) = 621.

These results, substituted in formulas (1) for m and fc, yield

6(621)
-

900(3.95) 171

6(142,000)
- 9002

42,000
u u

'

. _ 142,000(3.95)
-

900(621) _"
42,000

~ U 'U48<

Using these values for m and 6, the equation of the line of best fit to the data is

y = 0.0041s + 0.048.

This equation gives approximately the relation between the load and deflection

and holds for loads which do not bend the beam beyond its elastic limits. The
deflection produced by a load of 400 pounds, for example, is y = 0.0041(400) +
0.048 = 1.69 inches. The data and the line are shown graphically in Fig. 8-2.
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EXERCISE 8-2

Find the equation of the line of best fit to the sets of points in problem 1 and

in problem 2. Plot the points and draw the line.

1. (1,8), (4,8), (5,5), (8,3), (9,2), (11,1).

2. (-2,-10), (0,-5),(1,0), (2,5), (4,8).

3. The lengths // (inches) of a coiled spring under various loads x (Ib) are recorded

in the table. Find the line of best fit, y = mx + 6, for these measurements. Use

the resulting equation to find the length of the spring when the load is 17 pounds.

x 10 20 30 40 50

"j iTo 12J iix) 13^9 15.1

4. A business showed net profits at the end of each year for 4 years as follows:

Year 1234
Profit $10,000 $12 T

000 $13,000 $15,000

Determine the best linear fit and predict the profit for the 5th year.

5. The population .V of a city at the end of each decade t for 5 decades is shown

in the table. Find the line of best fit, X = mt + 6, for these data. Predict the

population at the end of the 6th decade.

t 1 2345
X 8,000 9,000 10,100 11,400 13,700

6. The relation between the total amount of heat // in a pound of saturated

steam at T degrees centigrade is // = mT + b. Determine m and b for the best

linear fit to these data.

T 50 70 90 110

~U 623 627 632 636

8-4 Nonlinear fits. A best linear fit may be obtained for any set of

points Or,!/). However, if the points depart considerably from a straight

line, the fit would be crude and perhaps far from satisfactory. For a

situation of this kind the scientist needs to decide on some nonlinear rela-

tion. There are, of course, many nonlinear functional forms. We shall

deal only with the forms

y = ax\

y = a 106
*,

y = a log x + b.
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Numerous physical relations approximately obey one of these types of

equations. These equations are advantageous because of their simplicity

and because the constants a and b are easily determined.

8-5 The power formula. We consider first the relation

y = axb
.

The logarithms of the members of the equation yield

log y = b log x + log a.

Here log y is expressed as a linear function of log x. This suggests the

plotting of the points (log #, log y). If the points so obtained lie approxi-

mately on a line, the power function is applicable to the set of data. The

procedure then is to determine a and b for the best linear fit to the points

(log x, log T/). The substitution of the values thus found in the equation

y = axb
gives a best power fit to the data.

A test of the applicability of a power function can be made quickly by
the use of logarithmic coordinate paper. Logarithmic coordinate paper

has its horizontal and vertical rulings placed at distances log 2, log 3, log 4,

and so on, from the origin. The original data plotted on this kind of

paper are equivalent to plotting the logarithms on the usual coordinate

paper. The following example illustrates the method for the power func-

tion and the use of the special coordinate paper.

EXAMPLE. The relation between the pressure p and the volume V of a con-

fined gas is given by

p = aV\

when the gas neither receives nor loses heat. Determine a and b for the data

contained in the table.

T(cuft) 9.80 6.72 4.53 4.16 3.36 2.83

p (lb/in
2
) 3 6 9 12 15 18

Solution. The given data are plotted on logarithmic paper in Fig. 8-3. The

points are approximately in a straight line, and therefore indicate that an equa-

tion of the power type is suitable for representing the data.

We now replace each value in the table by its common logarithm.

logF .9912 .8274 .6561 .6191 .5263 .4518

logp .4771 .7782 .9542 1.0792 1.1761 1.2553

The equation corresponding to this transformed data is

log p b log V + log a.

To obtain the best linear fit to the new data, we employ formulas (1), using log V
for x and log p for y. The first of the formulas yields the coefficient of log V and
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the second the constant term lop; a. We have the following sums:

2 log V = 4.0719, 2 (log I')
5 = 2.9610,

2 log />
= 5.7201, 2(log r)(log />)

= 3.5971.

Substituting these values and n =
6, we get

6(3.5971)
- 4.0719(5.7201)

"6(2.9619) -(4.0719)*

2.9620(5.7201) - 4.0719(3.5961)-- - -
a = 84.6.

Making these substitutions for a and 6, we have

p = 84.6 V- 1 - 43

The graph of this equation and the points representing the original data are shown

in Fig. 8-4.
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EXERCISE 8-3

In problems 1 and 2 assume the form y = axb and determine a and b for the

best fit.

1.

2.

3. A body falls s feet in t seconds. Show that the form t asb
is applicable

to the. recorded data and determine a and 6 for the best fit.

10 16 25 36

t .51 .79 1.01 1.24 1.49

4. If R is the air resistance in pounds against an automobile traveling at V miles

per hour, show that the form R = aVb is applicable to the measurements in the

table and find a and b for the best fit.

10 20 30 40 50

R 24 65 120 180
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5. Corresponding measurements of the volume and pressure of steam are given
in the table. Find the best fit of the form p = aV n to these data.

V 9 5 2.4 2.1 1

p 5 10 30 40 100

8-6 The exponential and logarithmic formulas. We saw in the pre-

ceding section that the power form can be reduced to a linear form. Simi-

larly, the exponential and logarithmic forms are reducible to linear forms.

By taking the common logarithms of both members the equation

y = a 106*

becomes log y bx + log a.

Here log y is a linear function of J. Hence the exponential formula is

applicable to a set of data if the points (x,log y) are in close proximity to a

straight line. Where this is the case, the procedure is to determine a and

b so that bx + log a is the best linear fit to the set of points (:r,log y).

To determine if the exponential function is adequate to represent the

given data, somilogarithmic paper may be used. This paper has the

usual scale along the x-axis, and the scale along the positive z/-axis is

logarithmic.

The equation y = a log x + b

expresses // as a linear function of log x. Here we would consider the

points (log x,y). If these are about in a straight line, then a and b should

be found for a linear fit to the points. The values thus obtained should

be substituted in the logarithmic equation.

EXAMPLE. The number of bacteria A
T

per unit volume in a culture after t hours

is given by the table for several values of t. Show that A" = a 106/ may represent

the data and find values for a and 6.

t 1

.V 70 88 111 127 160

Solution. The given data, plotted on semilogarithmic paper, yield points almost

collinear (Fig. 8-5). This indicates that the data can be approximated by an

exponential formula. Hence we transform the given data by taking the loga-

rithm of each Ar
.

t 1

log AT 1.845 1.945 2.045 2.104 2.204

We compute the following sums:

2t = 15, 2*2 = 55,

2 log N = 10.143, 2*(logW) = 31.306.
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Using these values in formulas (1), we get

5(31.306) - 15(10.143) 4.385
nft?76 =

5(65)
- 15*

=
"50"

=
'0877

'

. 55(10.143)
-

15(31.306) , ^
log a = ^

'--^
^ L =

1.766,

a = 58.3.

We obtain the equation A
r = 58.3 1000877 '. The graph and the given data are

shown in Fig. 8-0.

EXERCISE 8-4

In problems 1 3 find best fits of the type indicated.

-3-1 1 3

0.8 1.5 2.7 4.9 9.0

2. y = a - 106*

y = a log x + b

4. The bacteria count .V per unit volume in a certain culture at the end of t hours

was estimated as in the table. Find the best relation of the form A
T = a 10*'.

f 02468
.V 10 16 25 40 63

5. The temperature T (degrees C) of a cooling body at time t (min) was meas-

ured as recorded. Find an exponential formula of best fit for T in terms of t.

t 012345
T 100 79 63 50 40 32

6. The atmospheric pressure /) in pounds per square inch at a height h in thou-

sands of feet is shown in the table. Express p exponentially in terms of h.

h 5 10 15 20

~~P iTe 12! un &A 7.0

7. The horsepower P required for the speeds V in knots for a certain ship are

recorded in the table. Find the best fit to the data of the form V = a log P + b.

P 2000 4000 7000 12000

~V 12 13 14 15



CHAPTER 9

POLAR COORDINATES

9-1 Introduction. There are various types of coordinate systems. The

rectangular system with which we have been dealing is probably the most

important. In it a point is located by its distances from two perpendicular
lines. We shall introduce in this chapter a coordinate system in which

the coordinates of a point in a plane are its distance from a fixed point and
its direction from a fixed line. The coordinates given in this way are

called polar coordinates. The proper choice of a coordinate system de-

pends on the nature of the problem at hand. For some problems either

the rectangular or the polar system may be satisfactory; usually, however,
one of the two is preferable. And in some situations it is advantageous
to use both systems, shifting from one to the other.

9-2 The polar coordinate system. The reference frame in the polar
coordinate system is a half-line drawn from some point in the plane. In

Fig. 9-1 a half-line is represented by OA. The point is called the origin
or pole and OA is the polar axis. The position of any point P in the plane
is definitely determined by the distance OP and the angle AOP. The
segment OP, denoted by p, is referred to as the radius vector; the angle
AOP, denoted by 0, is called the vectorial angle. The coordinates of P are

then written as (p,0).

It is customary to regard polar coordinates as signed quantities. The
vectorial angle, as in trigonometry, is defined as positive or negative ac-

cording as it is measured counterclockwise or clockwise from the polar
axis. The p-coordinate is defined as positive if measured from the pole

along the terminal side 'of 6 and negative if measured along the terminal

side extended through the pole.

A given pair of polar coordinates definitely locates a point. For

example, the coordinates (2,30) determine one particular point. To plot
the point, we first draw the terminal side of a 30 angle measured counter-

clockwise from OA (Fig. 9-2) and then lay off two units along the terminal

side. While this pair of coordinates defines a particular point, there are

other coordinate values which define this same point. This is evident,
since the vectorial angle may have 360 added or subtracted repeatedly
without changing the point represented. Additional coordinates of the

point may be had also by using a negative value for the distance coordi-

nate. Restricting the vectorial angles to values numerically less than
120
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300, the following coordinates define the same point :

(2,30), (2,-330), (-2,210), (-2,-150).

The coordinates of the origin are (0,0), where 6 may be any angle.

The plotting of points in polar coordinates can be done more accurately

by the use of polar coordinate paper. This paper has concentric circles

and equally spaced radial lines through the center. For many purposes,

however, sufficient accuracy is obtained by estimating the angles and dis-

tances by sight.

EXERCISE 9-1

1. Plot the points: (3,60), (6, -30), (2,180), (-3, -225), (0,10). Give

three other sets of coordinates for each of the points, restricting the vectoriai

angles to values not exceeding 360 numerically.

2. Plot the points: (5,210), (4,0), (-0,135), (-2, -180). Give three other

sets of coordinates for each of the points, where the numerical values of the vec-

toriai angles do not exceed 360.

3. Where are the points for which (a) p =
4, (b) p =

4, (c) 6 = 45,

(<1)
= -90?

4. Where are the points for which (a) p =
0, (b) 8 = 0, (c) 6 = TT?

9-3 Relations between rectangular and polar coordinates. As we have

mentioned, it is often advantageous in the course of a problem to shift

from one coordinate system to another. For this purpose we shall derive

transformation formulas which express polar coordinates in terms of rec-

tangular coordinates, and vice versa. In Fig. 9-3 the two systems are

placed so that the origins coincide and the polar axis lies along the positive

x-axis. Then a point P has the coordinates (x,y) and (p,0).

Noticing the triangle OAfP, we have

x ?/

cos 6 = - and sin B = ->

p P

and hence

x = p cos 0, (1)

y = p sin 0. (2)
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(p,e)

M -X

FIGURE 9-3

To obtain p and 6 in terms of x and y, we write

p
2 = x2 + y* and

Whence, solving for p and 8,

tan 6 = .

x

= arc tan -

(3)

(4)

These four formulas enable us to transform the coordinates of a point,

and therefore the equation of a locus, from one system to the other. The
^-coordinate as given by formula (4) is not single-valued. Hence it is

necessary to select a proper value for 6 when applying the formula to find

this coordinate of a point. This is illustrated in Example 2.

EXAMPLE 1. Find the rectangular coordinates of the point defined by the

polar coordinates (6,120). (See Fig. 9-4.)

Solution. Using the formulas (1) and (2), we have

x = p cos0 = 6 cos 120 = -3,

y = p sin 6 = 6 sin 120 = 3\/3.

The required coordinates are ( 3,3Vs).

EXAMPLE 2. Express the rectangular coordinates (2, 2) in terms of polar

coordinates.

Solution. Here the formulae (3) and (4) give

p = Vx2 + y*
= 2\/2 and 8 = arc tan - = arc tan 1.

x

Since the point is in the third quadrant, we select 6 = 225. Hence the pair of

coordinates (2V2,225) is a polar representation of the given point.
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EXAMPLE 3. Find the polar coordinate equation corresponding to 2x 3y = 5.

Solution. Substituting for x and y gives

2(p cos 6) -3(p sin 6)
= 5 or p(2 cos 6 -3 sin 6)

= 5.

EXAMPLE 4. Transform the equation p = 4 sin 6 to rectangular coordinates.

Solution. Since p = Vz2 + ?/
2 and sin 6 = - = ====., we substitute in the

given equation and get

V*2 + v*
v/z2 + y

2

or

*2 + */
2 = 40.

The required equation is seen to represent a circle.

EXERCISE 9-2

Find the rectangular coordinates of the following points.

1. (4,90). 2. (3x^2,45). 3. (7,0).

4. (0,1 SO ). 5. (-8,270). 6. (-1,-60).

7. (6,150). 8. (4V2,-135). 9. (9,180).

Find non-negative polar coordinates of the following points.

10. (0,3). 11. (3,0). 12. (0,0). 13. (-1,0).

14. (0,-5). 15. (\/2,\/2). 16. (ev^-e). 17. (-2\/3,2).

18. (3,-4). 19. (-4,3). 20. (5,12). 21. (-5,-12).

Transform the following equations into the corresponding polar coordinate

equations.

22. x = 3. 23. y = -4 24 2x - y = 3.

25. 3x + y = 0. 26. y = x. 27. Ax + By = D.

28. a-
2 + if

= 16. 29. j?/
= a2

. 30. x2 + i/

2 - 2x + 2y = 0.

31. J2 -
y
2 = a2

. 32. .v

2 = 4j. 33. Or
2 + ?/

2
)
2

Transform the following equations to the corresponding rectangular coordinate

equations.

34. p = 4. 35. 6 = 0. 36. 6 = 45.

37. p 2 sin + 2 cos 0. 38. p = 6 sin 4 cos

39. p = 8 cos 6. 40. p = 8 sin 0.

41. p cos = 6. 42. p sin 6 = 6.

43. p
2 cos 26 = a2

. 44. p
2 sin 26 = a2

.

3
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47. p-

49. p =

1 - 2 cos 6

5

2 sin cos 6

POLAR COORDINATES

48. p =

[CHAP. 9

3 sin + 4 cos 6

9-4 Graphs of polar coordinate equations. The definition of a graph
in polar coordinates and the technique of its construction are essentially

the same as that of an equation in rectangular coordinates.

DEFINITION. The graph of an equation in polar coordinates consists of

all the points which have coordinates satisfying the equation.

We shall first consider comparatively simple equations and obtain their

graphs by preparing tables of corresponding values of the variables. Later

we shall discuss certain aids by which the curve tracing can be facilitated.

120' 60

ISO / 30

210'
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EXAMPLE 1. Draw the graph of p 3 + sin 0.

Solution. We assign certain values to in the interval to 360 and prepare

the following table.

By plotting these points and drawing a curve through them the graph of Fig, 9-5

is obtained.

FIGURE 9-6

EXAMPLE 2. Draw the graph of p = 4 cos 6.

Solution. We first prepare a table of corresponding values of p and 6.

B 30 45 60 75 90 120 135 150 180

~~p 4 3J5 2^8 2X) To" -2.0 -2.8 -3.5 -4

This table yields the graph in Fig. 9-6. We did not extend the table to include

values of 6 in the interval 180 to 360, since values of in this range would merely

repeat the graph already obtained. For example, the point (3.5,210) is on the

graph, but this point is also defined by the coordinates (3.5,30).

The graph appears to be a circle. This surmise is verified by transforming the

equation to rectangular coordinates. The transformed equation is (j 2)
2
-f if

= 4.

EXERCISE 9-3

Draw the graphs of the following equations. In the equations involving trigo-

nometric functions, points plotted at 30 intervals will suffice, with a few exceptions.

1. p = 5. 2. p = -5. 3. 6 = 120.

4. B - 180. 5. p = 1 - cos 0. 6. p = 1 - sin 6.
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7. p = 2 + cos 0.

10. p = 2a cos 0.

13 p =
sin0'

19. p = 10 sin2 0.

22. p = 4 sin - 4 cos 6. 23. p = 8 sin 6 + 6 cos 6.

9-5 Equations of lines and conies in polar coordinate forms. The

equations of lines and conies can be obtained in polar coordinates by
transforming the rectangular coordinate equations of these loci. The

equations can also be derived directly. We shall derive the polar coor-

dinate equation of a line in general position and the equations of the conic

sections in special positions.

In Fig. 9-7 the segment OR is drawn perpendicular to the line L. We
denote the length of this segment by p and the angle which it makes with

the polar axis by w. The coordinates of a variable point on the line are

(p,0). From the right triangle ORP, we have

- = cos (6
-

w)
p

or

p cos (9
-

o>)
= p. (6)

This equation holds for all points of the line. If P is chosen below OA,
then the angle ROP is equal to (w + 2w - 0). Although this angle is not

equal to (0 w), we do have cos (co + 2w 0)
= cos (w 0)

= cos (0 w).

In a similar way, the equation could be derived for the line L in any other

position and not passing through the origin.

V
FIGURE 9-7
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Formula (5) is called the polar normal form of the equation of a straight

line. For lines perpendicular to the polar axis co = or 180, and for

lines parallel to the polar axis = 90 or 270. Substituting these values

for co, we have the special forms

P COS s= p (6)

and

psin = p. (7)

The ^-coordinate is constant for points on a line passing through the

origin. Hence the equation of a line through the origin with inclination

a is

= a. (8)

Although the equation of a line through the origin can be written immedi-

ately in this form, it is worth noting that equation (8) is a special case of

equation (5). By setting p = in equation (8), we have p cos (6 co)
=

0,

cos (0 co)
=

0, 6 co = i?r, and =
JTT + co = a.

P(p,8)

FIGURE 9-8

We next write the equation of a circle of radius r with center at (pi,0i).

Noticing Fig. 9-8 and applying the law of cosines to the triangle ORP, we

get the equation of the circle in the form

p
2 + p!

2 - 2pp! cos ($
-

tfi)
= r2 . (9)

If the center is at (r,0), then pi
= r and 0i = and the equation reduces to

p = 2r cos fl. (10)

If the center is at (r,90), the equation becomes

p = 2r sin 9. (11)
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E

D

P(p,e)

P

FIGURE 9-9

R

We use the focus-directrix property of conies (Exercise 8-1, problem 15)

to derive their equations in polar coordinates. The equations can be ob-

tained in simple forms if the focus and origin coincide and the directrix

is parallel or perpendicular to the polar axis. In Fig. 9-9 the directrix DE
is perpendicular to the polar axis and to the left of O. If we indicate the

eccentricity by e, and the length of DO by p, we have for any point P(p,0)

of the conic

OP
EP e.

But the numerator OP =
p, and the denominator EP = DR = DO + OR

= p + p cos 6. Hence p/(p + p cos 6)
=

e, and solving for p, we get

ep
P =

1 - e cos (12)

When the focus is at the pole and the directrix is p units to the right of

the pole, the equation is

.

1 -f e cos 9
(13)

If the focus is at the pole and the directrix is parallel to the polar axis,

the equation is

or

P ~
1 + sin B

__,
1 e sin 9

P =

(14)

(15)

depending on whether the directrix is p units above or below the pole.

An equation in any of the forms (12) -(15) represents a parabola if

e = 1, an ellipse if e is between and 1, and a hyperbola if e is greater
than 1. The graph in any case can be sketched immediately. Having
observed the type of conic from the value of e, the next step is to find the

points where the curve cuts the polar axis, the extension of the axis through

0, and the line through the pole perpendicular to the polar axis. These
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are called the intercept points, and may be obtained by using the values 0,
90, 180, and 270 for 6. Only three of these values can be used for a

parabola, since one of them would make a denominator zero. The inter-

cept points are sufficient for a rough graph. For increased accuracy a

few additional points should be plotted.

(3,180;

FIGURE 9-10

EXAMPLE. Sketch the graph of p = 15/(3 2 cos 6).

Solution. The equation takes the form (12) when the numerator and denomi-

nator of the right member are divided by 3. This gives

P =
1
-

(2/3) cos 6

In this form we observe that e 2/3, and hence the graph is an ellipse. Substi-

tuting 0, 90, 180, and 270 in succession for in the original equation, the inter-

cept points are found to be

(15,0), (5,90), (3,180), and (5,270).

These points are plotted in Fig. 9-10. The points (15,0) and (3, 180) 'are vertices

and the other intercept points are the ends of a latus rectum. The center, mid-

way between the vertices, is at (6,0). The length of the major axis 2a =
18,

and a = 9. The distance between the center and the focus at is c = 6. Hence

52 = fl2
_ C2 = 81 _ 36 =

45> an(j b = 3v/5.

EXERCISE 9-4

1. By use of a figure find the equation of the line perpendicular to the polar

axis and (a) 3 units to the right of the pole, (b) 3 units to the left of the pole.

Compare your results with formula (6).
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2. By use of a figure find the equation of the line parallel to the polar axis

and (a) 3 units below the axis, (b) 3 unite above the axis. Check your results

with formula (7).

3. Show that formula (5) can be reduced to the form

= C
p Acosd + BsmB'

Plot two points and draw the line represented by each equation 4-6.

6. p =

+ 2 sin
' H

2 cos B - sin 6

-3
2 cos + 5 sin

Give the coordinates of the center and the radius of each circle defined by

equations 7-10.

7. p = 8 cos 0. 8. p = 6 sin 0.

9 p = -10 sin 0. 10. p= -4cos0.

1 1 . Use formula (9) and write the equation of the circle of radius 2 and (a) with

center at (4,0), (b) with center at (4,90), (c) with center at (2,0).

Sketch the conies defined by equations 12-23.

13 -

+sin0

1,1
9 1C 10

14 ' P - o.o a' 15 '

2cos0 H
3 -3sin0

12 _ 12

2 - cos0 ^
2 + sin0

0121. p =

5 -4sin0
10

wt "
1 -2cos0

~' "
2 + 3cos0

oo ft = 15
90 A = 18

P
3 + 5sin0

' p 3-4sin0'

9-6 Aids in graphing polar coordinate equations. We have seen that

an examination of an equation in rectangular coordinates may reveal

short-cuts to the construction of its graph. In the same way, certain

features of a graph in polar coordinates are often discovered by an analysis

of its equation. It is better, for economy of time, to wrest useful informa-

tion from an equation and thus keep at a minimum the tedious point-by-

point plotting in sketching a graph. We shall discuss and illustrate cer-

tain simple devices in polar curve tracing.

Variation of p with 0. Many equations are sufficiently simple so that

the way in which p varies as increases is evident. Usually a range of

0-values from to 360\yields the complete graph. However, we shall
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find exceptions to this rule. By observing the equation and letting

increase through its range, the graph ran be visualized. A rough sketch

may then be made with a few pencil strokes. To illustrate this situation,

we use the equation

p = 3(1 + sin 0).

By starting at 6 = and increasing the angle in 90 steps to 360, it is

a simple matter to see how p varies in each 90 interval. This variation

is represented in the diagram. The graph (Fig. 9-11) is a heart-shaped
curve called the cardioid.

Tangent lines at the origin. If p shrinks to zero as 6 approaches and

takes a fixed value 0<, then the lino 6 n is tangent to the curve at the

origin. Intuitively, this statement seems correct; it can be proved. In

FIGURE 9-11



132 POLAR COORDINATES [CHAP. 9

the preceding equation, p = 3(1 + sin 0), the value of p diminishes to zero

as increases to 270. Hence the curve is tangent to the vertical line at

the origin (Fig. 9-11).

To find the tangents to a curve at the origin, set p = in the equation
and solve for the corresponding values of 6.

Symmetry. We shall give tests for symmetry with respect to the pole,

the polar axis, and the vertical line 8 = 90. Noticing Fig. 9-12, the fol-

lowing tests are evident.

1. // the equation is unchanged when p is replaced by p or when 6 is

replaced by 180 4- 6, the graph is symmetric with respect to the pole.

2. // the equation is unchanged when is replaced by 0, the graph is sym-
metric with respect to the polar axis.

3. // the equation is unchanged when 6 is replaced by 180 0, the graph
is symmetric with respect to the vertical line 6 = 90.

These tests will be found helpful. When any one is satisfied in an

equation the symmetry is certain. On the other hand, the failure of a

test does not disprove the symmetry in question. This is unlike the

analogous situation in rectangular coordinates and is a consequence of

the fact that a point has more than one polar coordinate representation.

For example, replacing p by p, the equation

p = sin 26 becomes p = sin 26.

This does not establish symmetry with respect to the pole. But substi-

tuting 180 + $ for 6 yields

p = sin 2(180 + 0)
= sin(360 + 26)

= sin 26,

which proves the symmetry with respect to the pole.

(P,180-6)
(P,O)

(-P,

(p,i80+e)

FIGURE 9-12
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Continuing with the equation

p = sin 20,

we see that it does not satisfy tests 2 and 3. But it is sufficient to obtain

the graph for from to 180, and then to complete the drawing by the

known symmetry with respect to the pole. Since we have a trigonometric
function of 20, it is convenient to consider the variation of p as 6 increases

in steps of 45. The diagram indicates this variation. From it we see

FIGURE 9-13

the values of corresponding to the zero value of p, and therefore conclude

that the graph is tangent to the polar axis and the vertical line at the

origin. Having completed the graph (Fig. 9-13), it is seen that it has

all three types of symmetry. Because of its shape, the graph is called a

four-leaved rose. The barbs and numbers indicate how a point would

move in tracing the curve as increases from to 300.

Excluded values. Frequently equations are met in which certain values

of the variables are excluded. For example, p
2 = a2 sin places restrictions

on both p and 0. The values of p are in the range a to a, and cannot

have a value between 180 and 300, since p is imaginary for these values.

The curve extends into the third and fourth quadrants, however, since

the graph is symmetric with respect to the origin.

9-7 Special types of equations. There are several types of polar co-

ordinate equations whose graphs have been given special names. We
consider a few of these equations.

The graphs of equations of the forms

p = a sin n0 and p = a cos n0,

where n is a positive integer, are called rose curves. The graph of a rose

curve consists of equally spaced closed loops extending from the origin.
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The number of loops, or leaves, depends on the integer n. If n is odd,

there are n leaves; if n is even, there are 2n leaves. Figure 9-13 pictures

a four-leaved rose.

The graph of an equation of the form

or

p = 6 + a sin

p = b + a cos

is called a limagon. The shape of the graph depends on the relative

values of a and b. If a = 6, the limagon is called a cardioid from its heart-

like shape, as illustrated in Fig. 9-11. If the numerical value of b is

greater than that of a, the graph is a curve surrounding the origin (Fig. 9-5).

An interesting feature is introduced in the graph when a is numerically

greater than b. The curve then has an inner loop. To show this, we

draw the graph of

p = 2 + 4 cos e.

Replacing by leaves the equation unchanged, since cos (0) = cos 0.

Hence there is symmetry with respect to the polar axis. Setting p =

gives

2 + 4 cos =
0,

cos =
J,

= 120, 240.

The lines = 120 and = 240 are tangent to the curve at the origin.

The diagram indicates the variation of p as increases from to 180.

The graph is shown in Fig. 9-14; the lower half of the large loop and the

upper half of the small loop were drawn by the use of symmetry.

cos0

90 6

90 -* 120 -i 2

120 180 - -l 0-+-2

FIGURE 9-14
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The graphs of the equations

p
2 = a2 sin 28

135

and a2 cos 20

are Icmniscates. In each of these equations p ranges from a to a and

values of 6 which make the right member negative are excluded. In the

first equation may not take a value between 90 and 180 or between

270 and 300. In the second the excluded intervals are 45 < 6 < 135

and 225 < 9 < 315.

p
2 = a2 cos 28

FIGURK 9-15

FIGURE 9-10
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Discussing further the equation

p
2 = a2 cos 20,

we observe that its graph is symmetric with respect to the pole, the polar

axis, and the vertical line through the pole. As increases from to 45,
the positive values of p vary from a to and the negative values from a

to 0. Hence this interval for gives rise to the upper half of the right

loop and the lower half of the left loop of the graph (Fig. 9-15). Either

of these half loops combined with the known symmetries is sufficient for

completing the graph.

Finally, the equations

p = e *, p6 = a, and p = aO,

are examples of spirals.

Figs. 9-17 to 9-19.

Their graphs for a > and > are shown in

FIGURE 9-17

LOGARITHMIC SPIRAL

FIGURE 9-18

RECIPROCAL SPIRAL
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FIGURE 9-19

SPIRAL OF ARCHIMEDES

EXERCISE 9-5

1. Observe that (p,0) and ( p,180 6) are symmetric with respect to the

polar axis, and that (p,0) and ( p, 0) are symmetric with respect to the line

= 90. On the basis of this information, state two tests for the symmetry of

the graph of an equation. Apply the tests to the equation p= sin 26.

Sketch the graph of each of the following equations. First examine the equa-

tion to find properties which are helpful in tracing the graph. Where the literal

constant a occurs, assign to it a convenient positive value. In the spirals 25-29

use radian measure for 0.

2. p = 4(1
-

cos0).

4. p = a(l -f cos0).

6. p = 10 - 5 cos 0.

8. p = 8 cos 20.

10. p = 6 sin 30.

12. p = 2 sin 50.

14. p = 4 8 cos 0.

16. p = 4 + 8 cos 0.

18. p = a cos 40.

20. p
2 = 9 cos 20.

22. p
2 = -a2 cos 20.

24. p
2 = a2 cos 0.

26. p0 = 4.

28. p
2 = a (Lituus).

30. p = sin 0.

32. p - 3 sec -f 4.

3. p = 6(1
- sin 0).

5. p = 5 - 2 sin 0.

7. p = 8 -f 4 cos 0.

9. p = a sin 20.

11. p = 4 cos 30.

13. p = 2 cos 50.

15. p = 6 3sin0.

17. p = 6 4- 3 sin 0.

19. p = a sin 40.

21. p
2 = 16 sin 20.

23. p
2 = -a2 sin 20.

25. p = 20.

27. p = e*.

29. p
2 - a2

(Parabolic Spiral).

31. p = cos0.

33. p = 6 sec - 6,
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9-8 Intersections of polar coordinate curves. A simultaneous real solu-

tion of two equations in rectangular coordinates represents a point of

intersection of their graphs. Conversely, the coordinates of a point of

intersection yield a simultaneous solution. In polar coordinates, however,
this converse statement does not always hold. This difference in the two

systems is a consequence of the fact that a point has more than one pair

of polar coordinates. As an illustration, consider the equations p = -2,

p - 1 + sin 6 and the two pairs of coordinates (2,90), (-2,270). The

equation p = 2 is satisfied by the second pair of coordinates but not

by the first. The equation p = 1 + sin is satisfied by the first pair of

coordinates but not by the second. The two pairs of coordinates, how-

ever, determine the same point. Although the two curves pass through
this point, no pair of coordinates of the point satisfies both equations.

The usual process of solving two equations simultaneously does not yield

an intersection point of this kind. The graphs of the equations, of course,

show all intersections.

EXAMPLE 1 . Solve simultaneously and sketch the graphs of

p = 6 sin 6 and p = 6 cos 0.

Solution. Equating the right members of the equations, we have

6 sin = 6 cos 0,

tan0 =
1,

6 =
45,_225,

p =

(3v/2, 45)

FIGURE 9-20
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The coordinates (3V2,45) and (-3V2,225) define the same point. The graphs

(Fig. 9-20) show this point, and show also that both curves pass through the

origin. The coordinates (0,0) satisfy the first equation and (0,90) satisfy the

second equation. But the origin has no pair of coordinates which satisfies both

equations.

FIGURE 0-21

EXAMPLE 2. Solve simultaneously and draw the graphs of

p = 4 sin 6 and p = 4 cos 20.

Solution. Eliminating p and using the trigonometric identity cos2012 sin2
0,

we obtain

4sin0 = 4(1
- 2sin2

0),

2 sin2
4- sin -

1 =
0,

(2 smB -
I)(sin0 + 1)

= 0,

sin0 =
i, -1,

= 30, 150, 270,

P= 2, 2, -4.

The solutions are (2,30), (2,150), and (-4,270). Figure 9-21 shows that the

curves also cross at the origin, but the origin has no pair of coordinates which

satisfies both equations.

EXERCISE 9-6

In each of the following problems solve the equations simultaneously and

sketch their graphs. Extraneous solutions are sometimes introduced in the solv-

ing process. For this reason all results should be checked.

1. p = 2cos0,

P- 1-

2. p = 4 sin

p-2.
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3. p = 6 cos 0,

p cos 6 = 3.

5. p = a(l + cos 0),

p o(l cos0).

7. p
2 4 cos 0,

9 ' p " T
3p cos = 2.

11. p = 2sin0 + 1,

p = cos 0.

13. p = 2 sin 0,

= 60.

15. p = 2 sin J0,

p=l.
17. p = 4 + cos 0,

pcos0 = 3.

19. p = 2cos0 + 1,

pcos = 1.

4. p = a(l + sin 0),

p = 2a sin 0,

6. pcos0 =
1,

p = 2.

8. p 1 + sin 0,

p - 1 + cos 0.

g
10 - p = 4-3COS0'

p = 3 cos 0.

12. p
2 = a2

sjn 20,

p - aV2 cos 0.

14. p = sin2 0,

p - cos2
0.

16. p = 1 - sin 0,

p = cos 20.

18. p = 4 - sin 0,

p sin = 3.

2
20. p

sin + cos 0*

2
:

1 - cos0'



CHAPTER 10

PARAMETRIC EQUATIONS

10-1 Introduction. Relations between x and y up to this point have

been expressed by equations involving these variables. Another way of

defining a relation between x and y is through the use of two equations
in which each variable is expressed separately in terms of a third variable.

The third variable is called a parameter and the equations are called

parametric equations. Equations of this kind are of considerable im-

portance; the mathematical treatment of many problems is facilitated by
their use. The equations

x = 2t and y = t 4,

for example, are parametric equations and t is the parameter. The equa-
tions define a locus. If a value is assigned to t, corresponding values are

determined for x and ?/, which are the coordinates of a point of the locus.

The complete locus consists of the points determined in this way as t

varies through all its values. The relation between x and y is expressed

directly by eliminating t between the two equations. Thus solving either

of these equations for t and substituting in the other, we get

x - 2y = 8.

Often the parameter can be eliminated, as we have here done, to ob-

tain a direct relation. Sometimes, however, this process is not easy or

possible because the parameter is involved in a complicated way. The

equations

x = t* + log t and y = ^ 4- tan t

illustrate this statement.

It is sometimes helpful in the course of a problem to change an equation

in x and y to parametric form. Consider, for example, the parabola

defined by
x2 + 2x + y - 4.

If we substitute 2t for x and solve the resulting equation for y, we get

y = 4 4J 4*2
. Hence the parametric equations

x = 2t and y = 4 - 4* - 4?

represent the parabola. It is evident that other representations could be

obtained, since x may be equated to any function of t. This procedure is

141



142 PARAMETRIC EQUATIONS [CHAP. 10

inconvenient or perhaps impossible in equations which contain both

variables in an involved way.
The parameter as here used plays a different role from the parameter

which we discussed in Section 3-5. Here the parameter is a variable, and

a curve is determined by letting the parameter vary through its range. In

contrast, the parameter in a linear equation in x and y gives rise to a family

of curves (lines). A line is determined by each value assigned to the

parameter.

10-2 Parametric equations of the circle and ellipse. To find a para-

metric representation of the circle of radius a and center at the origin, we
select for the parameter the angle 8 indicated in Fig. 10-1. We have at

once

x - a cos 6 and y = a sin 6.

If we let increase from to 360, the point (x,y), defined by these equa-

tions, starts at (a,0) and moves counterclockwise around the circle. By
letting change directly with the time / so that =

kt, the equations become

x = a cos kt and y = a sin kt.

TheThese equations give the location of the moving point at any time.

speed of the point is constant.

The equations x = a cos 6 and y = b sin 6 represent an ellipse. This

statement can be verified by eliminating the parameter 0. Writing the

equations as

- = cos 6
a

and = sin 6,

FIGURE 10-1
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squaring both members of each equation, and adding, we get

From this result we see that the parametric equations represent an ellipse,

and we are able to interpret the quantities a and b. The geometric

significance of 6 can be seen in Fig. 10-2. The concentric circles are of

radii a and b. The terminal side of cuts the circles at A and B. The
intersection of the vertical line through A and the horizontal line through
B gives a point of the ellipse. For this point P, we have

x = OM = OA cos B = a cos 6,

y = MP = NB = OB sin 6 = b sin 0.

Hence as 6 varies, P moves along an ellipse. The ellipse is traced by
letting 6 vary through 360. If starts at and increases to 360, the

point P starts at (a,0) and traces the ellipse in a counterclockwise direction.

FIGURE 10-2

10-3 The graph of parametric equations. To obtain the graph of two

parametric equations, we first assign to the parameter a set of values and

compute the corresponding values of x and y. We then use the plotted

points (x,y) for drawing the graph. An alternate procedure is to eliminate
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the parameter and construct the graph of the resulting equation. In

some cases, however, the graph of the parametric equations is only a part

of the graph of the rectangular equation. Example 2 illustrates this case.

EXAMPLE 1. Sketch the graph of

x = 5t - P and y - 4* - P.

Solution. The table is the result of assigning to t the indicated values and

finding the corresponding values of x and y. The graph (Fig. 10-3) is the curve

drawn through the points (x,y) as determined by the table.

To eliminate the parameter between the preceding equations we subtract the

second equation from the first, which gives

x y =* t.

Then substituting x y for t in either of the given equations and simplifying, we
obtain

x* 2xy + y*
- 4x + 5y = 0.

By the test of Section 5-13 the graph is a parabola. The graph is probably more

easily obtained from the parametric equations than from the rectangular equation.

FIGURE 10-3
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EXAMPLE 2. Construct the graph of

x = 2 sin 2 6 and y = 2 cos2 6.

Solution. The graph is more easily obtained from the direct relation. By
adding the parametric equations, we obtain

or

x + y = 2(sin
2 6 + cos2

0)

r + y = 2.

The graph is the line in Fig. 10-4. We note, however, that the graph of the para-

metric equations is the segment AB. This results from the fact that the values

of x and y are restricted to the range to 2.

EXERCISE 10-1

Sketch the curve represented by each pair of equations 1-10. Check the

graph by use of the rectangular equation obtained by eliminating the parameter.

1. x = 2 -/,?/ = St.

3. x = er 1

, y = *.

5. x =
3<, /y=l~ /

2
.

7. x = 4 cos 0, y = 3 sin 0.

o 2 _ 2*
J. X ^ ; T; W r

; ^'

2. a: = f
2

, */
= 4f

4. x =
*, ?/

= e
3

.

6. x = 5 sin 0, y

8. x = cos 20, y

5 cos 8.

2 sin 0.

10. x = 2 + 5 sin 0, y = 2 - 3 cos 0.

Eliminate the parameter from each pair of equations in problems 1 1-20. Sketch

the curve, using either the parametric equations or the rectangular equation.

11. x = 2 sin 0, y = cos2 0. 12. x = tan2
0, ^ = sec2

0.

13. x = sec 0,
= tan 0. 14. x = J

2 + 4*, y = J
2 + 3*.

15. x = r 1

, y = J
- r 1

. 16. x = sin - cos 0, t/
= sin + cos 0.

4*
17. x = cos 0, y = cos 8 + sin 0. 18. x = *

-
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19. x = tan cot 0, y = tan 6 + cot 0. 20. x = sin cos 0, y = sin 0.

Use radian measure for the parameter in each problem 21-26 and sketch the

curve for t in the interval to 2ir.

21 . x t + sin t
y y = cos t.

23. x = Ae* v = sin J.

25. z = t cos
, ?/

= sin t.

27. Show that

22. x

24. x <

26. a:

J + sin t, y = t + cos t.

lOe*1

, ?/
= sin t.

t sin t, y = t cos .

3*
y

1

yield z3 + y
3

3z</
= 0. Sketch the graph. Notice that the parametric equa-

tions are preferable for this purpose.

10-4 The path of a projectile. The equations of certain curves can be

determined more readily by the use of a parameter than otherwise. In

fact, this is one of the principal uses of parametric equations. In the

remainder of this chapter parametric equations of curves are required.

These curves have interesting properties and also have important prac-

tical and theoretical applications.

We consider first the path of a projectile in air. Suppose that a body
is given an initial upward velocity of VQ feet per second in a direction

which makes an angle a with the horizontal. Assuming that the resistance

of the air is small and can be neglected without great error, the object

moves subject to the vertical force of gravity. This means that there

is no horizontal force to change the speed in the horizontal direction.

Noticing Fig. 10-5 with the origin of coordinates at the point where the

projectile is fired, we see that the velocity in the re-direction is VQ cos a.

Then the distance traveled horizontally at the end of t seconds is (v cos a)t

feet. Now the projectile is started with a vertical component of velocity

of VQ sin a feet per second. This velocity would cause the projectile to

rise upward to a height of (t; sin a)t feet in t seconds. But the effect of

the pull of gravity lessens this distance. According to a formula of physics

FIGURE 10-5
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the amount to be subtracted is \gP, where g is a constant and approxi-

mately equal to 32. Hence the parametric equations of the path are

x =
(i/o cos OL)t> y = (VQ sin oc)t

-
%g(*. (1)

If we solve the first equation for t and substitute the result in the second,
we get the equation of the path in the rectangular form

y = (tan a)x - /** , (2)y v ' 2vQ
2 cos2 a v '

This equation, which is of the second degroe in x and the first degree in
?/,

represents a parabola.

KXAMPLK. A stone is thrown upward with a velocity of 100 feet per second

at an angle of -If) with the horizontal. Write the equations of the path in para-

metric and rectangular forms.

Solution. We substitute r = 100, a = 45, and g = 32 in equations (1) and (2).

This gives the parametric equations

j = S0\ :

j/, //
= SO\ /:

J/ - 16f2
,

and the rectangular equation

.r
2

IJ
~ x ~"

sTxT

This last equation, reduced to standard form, becomes

(j - 100)- = -S00(// - 200).

The vertex, at (400.200), is the highest point reached by the stone. Setting

//
=

0, we find j = SOO. Hence the stone strikes the ground at the point (S00,0).

10-5 The cycloid. The path traced by a given point on the circum-

ference of a circle which rolls along a lino is called a cycloid. In order to

derive the equation of the cycloid, we select the line as the .r-axis and take

the origin at a position where the tracing point is in contact with the

.r-axis.

In Fig. 10-0 the radius of the rolling circle is a, and P is the tracing

point. In the position drawn, the circle has rolled so that CP makes an

angle (radians) with the vertical. Having rolled without slipping, the

segment OB and the arc PR are of equal length. Hence

OB = arc PB = aB.

Noticing the right triangle PDC, we may write

.r = 0.4 =OB-PD = ae-a sin 0,

y = AP = BC - DC = a - a cos 6.

The equations of the cycloid in parametric form are

x = a(0 - sin 9), y = a(l - cos 0).
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FIGURE 10-6

The result of eliminating from these equations is the complicated equation

x = a arc cos =fc V2 ay
-

y*.

EXERCISE 10-2

1. A ball is thrown upward with an initial velocity of 80 feet per second at

an angle of 45 with the horizontal. Write the parametric equations of its path,

using g - 32. Find also the rectangular equation of the path. How high does

the ball ascend and how far away, assuming the ground level, does it strike the

ground?

2. A projectile is fired upward with a velocity of 160 feet per second at an

angle of 30 with the horizontal. Find the coordinates of its position at the end

of (a) 1 second, (b) 3 seconds, (c) 5 seconds. At what times is the projectile

64 feet above the starting point?

3. Write the equations, both in parametric and rectangular forms, of the

path of a projectile which is fired horizontally with a velocity of t; feet per second.

If the projectile is fired horizontally from a building 64 feet high, find how far

downward and how far horizontally it travels in 2 seconds.

4. A circle of radius a roils along a line. A point on a radius, 6 units from

the center, describes a path. Paralleling the derivation in Section 10-5, show

that the path is represented by the equations

x = ad 6 sin 0, y = a b cos 6

The curve is called a curtate cycloid if 6 < a and a prolate cycloid if 6 > a.

5. Sketch the curve of the equations in problem 4, taking a = 4 and 6 = 3.

Sketch the curve if a = 4 and 6 = 6.

6. A circle of radius 4 rolls along a line and makes a revolution in 2 seconds.

A point, starting downward on a vertical radius, moves from the center to the cir-

cumference along the radius at a rate of 2 feet per second. Find the equations

of the path of the point.
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FIGURE 10-7

7. The end of a thread, kept in the plane of a circle, as it is unwound tautly

from the circle describes a path called the involute of the circle. Use Fig. 10-7

to show that the parametric equations of the involute are

x = a(cos + Q sin 6), y = a(sin 6 6 cos 0).

8. In Fig. 10- -8 a circle of radius a is tangent to the two parallel lines OX and

AC. The line OC cuts the circle at B, and P(x,y) is the intersection of a horizontal

line through B and a vertical line through C. Show that the equations of the

locus of P
t
as C moves along the upper tangent, are

x = 2a tan 0, y = 2a cos2 0.

This curve is called the witch of Agncsi. Show that its rectangular equation is

O
FIGURE 10-8
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FIGURE 10-9

9. In Fig. 10-9, OP = AB. Show that the equations of the path traced by P,

as A moves around the circle, are

x = 2o sin
2
6, y = 2a sin2 tan 0.

The curve is called the dssoid of Diodes. The rectangular equation is

10. The path traced by a given point on the circumference of a circle of radius

Jtt as it rolls inside and along a circle of radius a is called a hypocydoid of four

cusps. Use Fig. 10-10 to obtain the parametric equations

x - a cos3
0, y - a sin3

6.

Y

FIGURE 10-10



CHAPTER 11

SPACE COORDINATES AND SURFACES

11-1 Space coordinates. In our study thus far wo have dealt with

equations in two variables, and have pictured equations in a plane coor-

dinate system. When we introduce a third variable a plane will not

suffice for the illustration of an equation. For this purpose our coordinate

system is extended to three dimensions.

Let OA", 01", and OZ be three mutually perpendicular lines. These

lines constitute the .r-axis, the //-axis, and the 2-axis. The positive direc-

tions of the axes are indicated by arrows in Fig. 11-1. In this drawing,
and others which we shall make, the j- and 2-axes are in the plane of the

page, and the //-axis is to be visualized as perpendicular to the page.

The 2-axis may be regarded as vertical and the others as horizontal. The

axes, in pairs, determine the three mutually perpendicular planes, XOY,
XOZ, and YOZ. These are called coordinate planes, and are designated

respectively the .r//-plane. the .rz-plane, and the //z-plane. The coordinate

planes divide space into eight regions, called octants. The octant with all

coordinates positive is called the first octant; we shall not refer to any of

the other octants bv number.

'O I

X

FIGURE 11-1
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(-1.5.-1,]

-(0,0,2)

(3,1,2)

f
(0,2,0)

*(2,0,-2)

FIGURE 11-2

Having selected a unit of measurement, the position of a point is deter-

mined by its distances from the coordinate planes. The distance of a

point P from the f/z-plane is called the x-coordinatc of the point. Similarly,

the distance from the zz-plane is called the y-coordinate, and the distance

from the rr?/-plane the z-coordinate. The coordinates of a point are written

in the form (x,y,z).

In plotting points and drawing figures, we shall make unit distances on

the x- and z-axes equal. A unit distance on the */-axis will be represented

by an actual length of about 0.7 of a unit. The y-axis will be drawn at

an angle of 135 with the z-axis. This position of the //-axis and the fore-

shortening in the ^-direction aid in visualizing space figures. Notice, for

example, the cube and the plotted points in Fig. 11-2.

11-2 The locus of an equation. The locus of an equation in the three-

dimensional system is defined exactly as in the case of a two-dimensional

system.

The locus of an equation consists of all the points, and only those points,

whose coordinates satisfy the given equation.

In the two-dimensional system we found lines and curves as the loci

of equations. In three dimensions the locus of an equation is a surface.
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There are equations whose loci, in three dimensions, are space curves

(curves not lying in a plane). We are excluding space curves from con-

sideration. We have noticed, of course, that some two-dimensional equa-
tions have no loci, and that others consist of one or more isolated points.

Similarly, there are exceptional cases in a three-dimensional system. How-

ever, we shall be interested in equations whose loci exist and are surfaces.

11-3 Cylindrical surfaces. We shall begin our study of loci by con-

sidering equations in one and two variables. As a further restriction, we
shall use equations of only the first and second degrees. The loci of equa-
tions of this class are comparatively easy to determine.

To find the locus of the equation

for example, we notice that the equation is satisfied by giving x the value

4. Since the equation does not contain ?/ or z, no restrictions are placed

on these variables. Hence the locus consists of all points which have the

^-coordinate equal to 4. The locus is obviously the plane parallel to the

?/2-plane and 4 units to the right.

Passing now to a linear equation in two variables, we choose for illus-

tration the equation

2y + 3z = 6.

In the ^-plane this equation represents a line. Consider now a plane

through this line and parallel to the x-axis (Fig. 11-3). Any point on this

plane has a corresponding point on the line with the same //- and ^-coor-

dinates. Hence the coordinates of the point satisfy the given equation.

We conclude, therefore, that the plane is the locus of the equation.

FIGURE 11-3
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The two examples indicate the correctness of the following statement:

The locus of a first degree equation in one or two variables is a plane. The

plane is parallel to the axis of each missing variable.

Take now the equation

(x
-

2)
2 + y*

- 4.

In the xy-plane the locus of this equation is a circle of radius 2 and with

the center on the ar-axis 2 units to the right of the origin (Fig. 11-4). Let

(z,2/,0) be the coordinates of any point of the circle. Then the point

(x,y,z), where z is any real number, satisfies the equation. Thus we see

that the locus of the given equation is a surface generated by a line which

moves so that it stays parallel to the z-axis and intersects the circle.

A surface generated by a line which moves so that it stays parallel to

a fixed line and intersects a fixed curve in a plane is called a cylindrical sur-

face or cylinder. The curve is called the directrix, and the generating line

in any position is called an element of the cylinder.

In accordance with this definition, a plane is a special case of a cylinder;

the directrix may be a straight line. Hence the locus of each of the three

equations which we have considered is a cylinder.

It is easy to generalize the preceding discussion to apply to equations
in two variables, even without restriction to the degree, and establish the

following theorem.

THEOREM. The locus of an equation in two variables is a cylinder whose

elements are parallel to the axis of the missing variable.
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EXERCISE 11-1

1. Draw the coordinate axes and plot the points: 4(0,0,2), 5(0,2,0), C(2,0,0),

D(2,3,0), (3,2,4), ^(-2,0,4), <?(-!,-!, -1), //(2,l,-2).

2. Draw a cube which has the origin and the point (4,4,4) as opposite corners.

Write the coordinates of the other corners.

3. Draw the edges of a box which has four of its vertices located at the points

(0,0,0), (3,0,0), (0,2,0), and (0,0,2). Write the coordinates of the other vertices.

4. Draw the rectangular parallelepiped which has three of its faces in the

coordinate planes and the points (0,0,0) and (4,5,3) as the ends of a diagonal.

Write the coordinates of the vertices.

Describe the surface corresponding to each equation 5-24 and make a sketch

of the surface.

5. x = 0. f>. //
= 0. 7. 2 = 0.

S. 2 = 5. 9. 2 = -5. 10. i + //
= 4.

11. 3-r + \z = 12. 12. 2// + 2 = 0. 13. x -+ 2 = 0.

14. 2x -
//
= 0. 15. 3// -2 = 6. If), z - 4x = S.

17. j.2 + V
2 = 4. IS. (//

-
2)

2 + 22 = 1. 19. r2 = 92.

20. ir
= 42. 21. (.r

-
2)

2 = %. 22. 4x* + 9//
2 = 36.

23. J2 + 22 - 4j -
6// + 9 = 0. 24. j- + 4//

2 - 4* -
32y/

= 64.

11-4 The general linear equation. In rectangular coordinates of two

dimensions we found that a linear equation, in either one or two variables,

represents a line. In our three-dimensional system we might, by analogy,

surmise that linear equations, in one, two, or three variables, represent

surfaces of the same type. The surmise is correct. At this point, how-

ever, we merely state the fact as a theorem, and reserve the proof for the

next chapter.

THKORKM. The locus, in three dimensions, of the equation

Ax + BI/ + CZ + D = 0,

where A, 7?, and C are not all zero, is a plane.

The location of a plane represented by a linear equation can be deter-

mined by finding the lines in which the plane intersects the coordinate

planes. These intersections, as well as the intersections which any sur-

face makes with the coordinate planes, are called traces.

Consider the equation

4x + 3y + 6z = 12.

The trace of the locus on the arc-plane has the ^-coordinate equal to zero.

Hence we set y = in the given equation and have

4jr + 6* - 12
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z

C(0,0,2)

3y + 62 = 12

FIGURE 11-5

as the equation of the trace on the zz-plane. The equations of the traces

on the xy- and i/z-planes are

4z + 3y = 12 and 3y + 62 = 12.

Figure 11-5 shows segments of the traces. These segments form a triangle

which may be used to picture the plane.

11-6 Second degree equations. The locus of a second degree equation

is called a quadric surface. In general it is not easy to determine the

characteristics and location of a quadric surface corresponding to an

equation. We shall use equations of simple type, however, whose loci are

more easily studied.

The main device in examining the locus of an equation consists in ob-

serving the intersections of the surface by the coordinate planes and planes

parallel to them. The idea of symmetry, as in a two-dimensional system,

can be used to advantage. If x can be replaced by x without changing

the equation, there is symmetry with respect to the $/2-plane. Similar

statements apply for the other variables and coordinate planes.

To illustrate the method, we examine the equation

X2 + 7/
2 = Z.

The surface is symmetric with respect to the yz- and rrz-planes. Negative
values must not be assigned to z. This tells us that no part of the surface

is below the zt/-plane. When z =
0, x = and y = 0. Sections made by

planes parallel to the xy-plane are circles. This is evident if we substitute
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FIGURE 11-6

a positive value for z. The plane z = 1, for example, cuts the surface in

the circle

r2 + ?/
= 4.

Circles of greater radii are obtained as the intersecting plane is taken

farther and farther from the zt/-plane.

We next substitute y = and get the equation

a:
2 = 4z.

Hence the trace in the zz-plane is a parabola. Similarly, the trace in the

t/z-plane is //
2 = 4z.

We now have sufficient information to form a mental picture of the sur-

face. As a matter of interest, though, we observe that sections parallel to

the xz- and #z-planes are parabolas. Taking x =
4, for example, the

equation reduces to

?/
= 4(

-
4).

The coordinates of the vertex of this parabola are (4,0,4). Figure 11-6

shows a sketch of the surface in the first octant.

11-6 Quadric surfaces. We shall now discuss a number of second de-

gree, or quadratic, equations which are said to be in standard forms. The

study of these equations and their loci, though presently of only geometric

interest, furnish information and experience which will prove helpful in

other mathematical situations, particularly in the calculus.

A. The ellipsoid. The locus of the equation
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ELLIPSOID

HYPERBOLOID OF ONE SHEET
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is called an ellipsoid. We see at once that the surface is symmetric with

respect to each coordinate plane. By setting one of the variables at a

time equal to zero, we find the trace equations to be

The traces are all ellipses. Next we assign to x a definite nonzero value,

x =
0*0, and write the given equation as

b2
'

c2

This equation shows that sections made by planes parallel to the ?/-plane

are ellipses. Further, the elliptic sections decrease in size as the inter-

secting plane moves farther from the /ye-plane. When the moving plane
reaches a distance a from the //z-plane, the equation of the section becomes

and the intersection, therefore, is a point. No part of the ellipsoid is to

the right of the plane jc = a or to the left of the plane -r = a.

A similar discussion could be made with respect to sections parallel to

each of the other coordinate planes. Elliptic sections are obtained for

values of z between r and r, and for values of y between b and 6.

By the method of sections we obtain a clear mental picture of the

ellipsoid and a guide for making a sketch (Fig. 11-7).

2 52 C2

FIGURE 1 1-7
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If two of the three quantities a, 6, and c are equal, the sections parallel

to one of the coordinate planes are circles. Taking a = b and choosing a

permissible value ZQ for 2, we have the equation

Thus we see that planes parallel to the zy-plane cut the surface in circles.

The ellipsoid for this case could be generated by revolving the xz- or the

i/2-trace about the z-axis. A surface generated by revolving a curve about

a straight line is a surface of revolution. Finally, if a = b = c, the ellipsoid

is a sphere.

B. The hyperboloid of one sheet. The surface represented by the

equation

*! + l!.

2

_*! = i

a2
""

&2 c2

is called a hyperboloid of one sheet. Setting z = 0, we get
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Hence the xy-trace is an ellipse. If we replace z in the given equation by
a fixed value z

,
we obtain the equation

This equation shows that sections parallel to the zt/-plane are ellipses and

that the sections increase in size as the intersecting plane z - zo recedes

from the origin. If a = 6, the sections are circles, and the surface is a

surface of revolution.

The traces in the xz- and i/z-planes are respectively the hyperbolas

*2 *2
i j 2/

2 *
i-i- -5

= 1 and =-
-^
= 1.

a2 c2 o2 c2

The sections parallel to the xz- and 7/z-planes are likewise hyperbolas.

Each of the equations

?'_?/! + 5? =]
a2 62 c2

and

represents a hyperboloid of one sheet. The first encloses the #-axis and

the second the r-axis.

C. The hypcrholoid of two sheets. The surface represented by

_ !_ !- i

a2 b2 c2

is called a hyperboloid of (wo sheets. By setting each variable in turn equal

to zero, we get the equations

a2 62 C2

FIGURE 11-9
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HYPERBOLOID OF Two SHEETS

ELLIPTIC PARABOLOID
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The first two equations show that the xy- and zz-traces are hyperbolas.

The third tells us there is no trace in the 7/z-plane. The sections made

by the plane x = XQ is given by the equation

This equation represents a point or an ellipse according as the numerical

value of J is equal to or greater than a. Sections parallel to the xz- and

r/y-planes are hyperbolas. From this information the surface (Fig. 11-9)

is readily visualized.

If b =
r, the hyperboloid of two sheets is a surface of revolution.

Hyporboloids of two sheets are also represented by the equations

a- 0- cz a2 62 c

D. T/jf elliptic paraboloid. The locus of the equation

FIGURE 11-10
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is called an elliptic paraboloid. The zy-trace, obtained by setting z = 0, is

the origin. No part of the surface lies below the z,y-plane because there

are no real values for x and y corresponding to a negative z. Planes parallel

to and above the :rt/-plane make elliptic sections which increase in size

as the plane recedes from the origin.

The traces in the xz- and i/z-planes are respectively the parabolas

~~7j
*" c z and ~7~n

~ c z.
a2 o2

The surface is sketched in Fig. 11-10.

If a = bj the sections parallel to the zz/-plane are circles. For this case

the surface is obtainable by rotating either the xz- or i/z-trace about the

z-axis.

Elliptic paraboloids are also represented by the equations

E. The hyperbolic paraboloid. The locus of the equation

^
-
^

= C2z

is called a hyperbolic paraboloid. The xy-tr&cQ is given by the equation

~~o
~~"

jTiz

= " Or I r |" 1 1 v
a o \a o/ \a u

This equation represents a pair of lines intersecting at the origin. The
sections made by the plane z = z is the hyperbola

2 -,,2

The hyperbola has its transverse axis parallel to the x-axis when z is

positive and parallel to the i/-axis when z is negative.

Sections by planes parallel to the zz-plane and the t/z-plane are parabolas.

FIGURE 11-11
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HYPERBOLIC PARABOLOID

Further aid in visualizing the surface may be had from Fig. 11-11.

A hyperbolic paraboloid is also represented by each of the equations^

/2 ~2 7/2 yl

F. The elliptic cone. The locus of the equation

FIGURE 11-12
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is an elliptic cone. Setting z, ?/, and z in turn equal to zero, we have the

trace equations

a? 3/2 ?!-?! ^^5!
a2

"
i

~62
~ U

' a2 c2
'

62 c2
'

These equations reveal that the x?/-trace is the origin, and that each of the

other traces is a pair of lines intersecting at the origin.

Sections parallel to the #z/-plane are ellipses, and those parallel to the

other coordinate planes are hyperbolas.

For the case in which a = 6, the cone is a right circular cone.

Elliptic cones are also represented by the equations

EXERCISE 11-2

Draw the traces on the coordinate planes:

1. 2x + 3y + 4z = 12. 2. 2x + y + 2z = 4.

3. x - 4?/ + z = 4. 4. 2x + 3f/
- z = 6.

5. x + t/ 2 = 0. 6. x ?/
= 0.

Identify and sketch each quadric surface. If preferred, make the sketch in

the first octant only and state the symmetry with respect to the coordinate planes:

9. x2 + z/
2 + 22 = 16. 10.

13. a;
2 + y

- zz = 16. 14. z2 -
y
2 - z2 = 16.

15 El _ t - * - 1 i ^ _ f _ L
2

_ 11S<
16 9 4

~ L 16 '

4 9 9
~ L

19. y* + z* = 4x. 20. a;
2 -

y*
= 4z.

9 16
~

4'
'

4
~

4

23 5l + ^ = l
2

. 24 ^ + ?-
2

'

16
^

9 4
^'

4
+

4



CHAPTER 12

VECTORS AND PLANES AND LINES

12-1 Vectors. There are two special kinds of physical quantities which

are dealt with extensively in physics and in mathematics. One kind has

magnitude only, and the other has magnitude and direction. A quantity
which has magnitude only is called a scalar. The length of an object,

expressed in terms of a chosen unit of length, is a scalar. Mass, time,

and density are other illustrations of scalars. A quantity which has both

magnitude and direction is called a rector. Forces, velocities, and accelera-

tions are examples of vectors. These quantities have direction as well as

magnitude.
A vector is customarily represented by an arrow. The length of the

arrow represents the magnitude of the vector and the arrow is pointed in

the assigned direction. Thus a force, for example, could be represented

graphically by an arrow pointing in the direction in which the force acts

and having a length (in a convenient unit) equal to the magnitude of the

force.

Two vectors are said to be equal if they are parallel, have the same

magnitude (length), and point the same way. The vectors A and B in

Fig. 12-1 are equal. If a vector has the same magnitude as A and points

in the opposite direction, it is denoted by A.*

As might be inferred from the definition, vectors are of great importance
in physics and engineering. They are also used to much advantage in

pure mathematics. The study of solid analytic geometry, in particular,

is facilitated by the application of the vector concept. Our immediate

objective in the introduction of vectors, however, is their use in dealing

with planes and lines in space. To pursue this study, it is necessary first

to consider certain operations on vectors.

FIGURE 12-1

* The bold-faced type indicates that the letter represents a vector.
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12-2 Operations on vectors. It may be observed that a directed line

segment (Section 2-1) is a vector. In numerous places we have added

and subtracted directed line segments. In all these cases the vectors have

had the same, or the opposite, directions. To obtain the sum or the dif-

ference of two such vectors, we have applied the usual method of adding

and subtracting algebraic quantities. We now define the sum and dif-

ference of two vectors where there is no restriction as to their directions.

To find the sum of two vectors A and B, we draw from the head of A a

vector equal to B. The sum of A and B is then defined as the vector

drawn from the origin of A to the head of B (Fig. 12-2).

Since the opposite sides of a parallelogram are equal and parallel, it

may be seen from Fig. 12-3 that the sum of two vectors is independent of

the order in which they are added. That is,

A + B = B + A.

Hence vectors are said to be commutative with respect to addition.

The sum of three vectors A, B, and C may be obtained by adding C to

A + B. It is easy to show geometrically that the sum of three or more

vectors is independent of the order of addition. For example,

A + B + C = (A + B) + C - A + (B + C).

This is called the associative law of addition.

To subtract the vector B from the vector A, we first draw the vectors

from a common origin (Fig. 12-4). Then the vector extending from the

end of B to the end of A and pointing toward the end of A is defined as the
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A-B

FIGURE 12-5

difference A B. The triangle formed by the vectors B, A B, and A
shows that

B + (A
-

B) - A.

That is, A B is the vector which added to B gives A.

The product of a scalar m and a vector A, expressed by ??iA, is a vector

m times as long as A, and has the direction of A if m is positive, and the

opposite direction if m is negative. If m = 0, the product is a zero vector.

If m = -1, the product is -A. (See Fig. 12-5.)

If m and n are scalars, the sum of wA and wA is a vector m + n times

as long as A. This is expressed by

nA = (m + n)A. (1)

The vectors A and B and A + B form the sides of a triangle (Fig. 12-2).

If each of these vectors is multiplied by a scalar m, then wA, ?wB, and

m(A + B) form a similar triangle, and hence

w(A + B) = wA + wB. (2)

Equations (1) and (2) show that vectors and scalars obey the distributive

law of multiplication.

12-3 Vectors in a rectangular coordinate plane. Vectors are con-

veniently dealt with when they are expressed as the sum of vectors parallel

to the coordinate axes. The letters i and j are usually employed to repre-

sent vectors of unit length from the origin to the points (1,0) and (0,1)

respectively. Any vector in the plane can be expressed as the sum of a

scalar times i and a scalar times j. Thus the vector V (Fig. 12-0) may be

written as

V = ai + 6j.
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y
i,

1(0,1)

* (1,0)

FIGURE 12-6

The vectors ai and bj are called the components of V. The vector ai

is the z-component and bj is the ^/-component. The lengths of V, ai,

and bj are denoted respectively by the symbols |V|, |a|, and |6|. These

quantities, by the Pythagorean theorem, satisfy the relation

The quotient of V and |V| is a vector of unit length in the direction of V.

A vector is called a unit vector if its length is unity.

If Vi and V2 are vectors in terms of their components

i
- aii + a2i +

then

Vt + V2
-

(01 + ai)i + (61 + 6i)j.

Thus the sum is a vector whose x- and ^/-components are the sums of the

x- and ^-components respectively of the two given vectors.

Similarly, we have

V1 -V2 =(a1 -o2)i+(& 1 -62)j.

EXAMPLE 1. Vectors are drawn from the origin to the points A (3, 2) and

5(1,5). Indicating these vectors by OA = A and OB = B, find A + B and A - B.

Solution. The vectors (Fig. 12-7) are

A = 3i - 2j, B * i + 5j.

Their sum is

A + B = 4i + 3j,

and their difference is

A - B = 2i - 7j.

EXAMPLE 2. Find the vector from the origin to the point of the way from

A(l f3)toB<4,-3).

Solution. The required vector is equal to the vector from the origin to A plus $

of the vector from the point A to the point B. Indicating the vectors from the

origin to A and B by A and B respectively, we have
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(4,3)

FIGURE 12-7

A = i + 3j,

B = 4i - 3j,

B - A = 3i - 6j.

Hence the required vector V is

V = i + 3j + (3i
-

6j)
= 3i - j.

EXERCISE 12-1

In problems 1-4 find the sum of the vectors from the origin to the given points.

Also subtract the second vector from the first. Draw all vectors.

1. .4(2,3), #(-4,5).
3. 4 (3, -2), B(-i,-4).

2. 4(5,0), 5(0,4).

4. 4(6,7), B(-5,-5).

Determine a unit vector having the direction of the vector in each problem 5-8.

5. 3i + 4j. 6. 3i - 12j. 7. 12i - 5j.

8. 2i - 3j. 9. i + 2j. 10. 4i + 3j.

Find the length of each vector 9-12 and the cosine of the angle which the

vector makes with the positive z-axis.

11. i + j. 12. -i + 3j. 13. i+Oj.

14. Oi + 3j. 15. -3i + 2j. 16. 5i + 12j.

17. Find the vector from the origin to the mid-point of the vector PiP2 join-

ing P,(3,8) and P2(5,- 8).
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18. Find the vectors from the origin to the trisection points of the vector PiP 2

joining the points Pi(-3,4) and P2(12,-5).

12-4 Vectors in space. In the three-dimensional rectangular coordinate

system the unit vectors from the origin to the points (1,0,0), (0,1,0), and

(0,0,1) are denoted respectively by i, j, and k. Any vector in space can

be expressed in terms of these unit vectors. Thus the vector from the

origin to the point A (a,b,c) is

OA = A - ai + 6j + ck.

The vectors ai, bj, and ck are the x-, t/-, and z-components of the vector A.

The length of the vector A may be obtained by using the lengths of the

sides of the right triangles OCA and ODC (Fig. 12-8). From the Pythag-
orean relation, we have

(OAY - (OC)
2 + (CAY

-
(OZ>)

2 + (DC)
2 + (CAY

= a2 + fc
2 + c2 .

Hence the length of A is

62 + c2 .

The vector from Pi(xi,y i9zi) to P^x^y^z^ in Fig. 12-9 has the compo-
nents (x<t Xi)i, (7/2

~
2/1)j, (22 2i)k. Hence it is expressed by

P\Pt = (*,
-

xi)i + (yt
-

i/OJ + (*
-

zi)k.

The length of the vector PiP2 ,
or the distance d between the points Pi and

P2 ,
is

FIGURE 12-8
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FIGURE 12-0

EXAMPLE. The points .4(1, -2,3), #(-4,5,6), and 0(5,7,0) are vertices of a

triangle. Express the sides as vectors and find the length of each side.

Solution. The vectors from the origin to the given points are

OA = A = i
-

2j + 3k,

OB = B = -4i + 5j -f 6k,

OC = C = 5i + 7j.

The sides, expressed as vectors, are

AB = B - A = -5i -f 7j 4- 3k,

BC = C - B = 9i + 2j
-

6k,

CA = A - C - -4i -
9j -f 3k.

The lengths of the vectors are

\AB\ = V(-5yr+~72~+l? = v'S3,

\Bc\ =

\CA\ =

22 + (-6) 2 =11,

)*+ (-9>-h3 2 = Vl06.

EXERCISE 12-2

Find the distance between the points A and B in each problem 1-4.

1. A(-3,2,0), #(6,-4,2). 2. .4(3,1,4), B(l f
-l

f -2).

3. A(5,7,l), 5(6,-3,2). 4. .4(4,4,0), 5(-2,l,-2).

In each problem 5-8 the given points are the vertices of a triangle. Determine

the vectors AB, BC, and CA and the lengths of these vectors.

5. A(6,8,l),(0,2,l),C(0,-4,-5).
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6.

7. A(3,3,3), 8(4,5,5), C(l,2,5).

8. .1(2,4,5), B(6,8,-l), C(-2,-2,l).

Determine a unit vector having the direction of the vector in each problem 9-12.

9. 6i + 3J
- 6k. 10. 2i - 4j + 4k.

11. 2i - j
- 3k. 12. i + j + k.

13. Find the vectors from the origin to the mid-point and the trisection points

of the line segment (1, 3,7), (7,3, 2). What are the coordinates of the terminal

points of these vectors?

14. Find the equation of a sphere of radius 5 and center at (1, 2,3).

15. Find the center and radius of the sphere x* + ?/
2 + z2 + 4x 2y + fa = 0.

16. Find the coordinates of the points which divide the line segment (4,5,7),

(2,3,5) into four equal parts.

17. Find the vector from the origin to the intersection of the medians of the

triangle whose vertices are 4(4,2,1), J5( 5,7,0), and C(4, 3,5).

18. The line segment (3,4,6), ( 1,1,0) is produced by its own length through
each end. Find the coordinates of the new ends.

12-5 The scalar product of two vectors. So far we have not defined a

product of two vectors. Actually there are two kinds of products of two

vectors which have arisen in physics and are extensively used. We shall

define one of these products and make some applications to geometry.
The scalar product of two vectors A and B, denoted by A B, is defined

by the equation

A-B= |A||B|cos0,

where 6 is the angle between the vectors when drawn from a common
origin (Fig. 12-10). It makes no difference whether 6 is taken as positive

or negative, since cos 6 = cos (-6). However, we shall restrict B to the

range from to 180. The angle 6 is if A and B point in the same

direction, and is equal to 180 if they point oppositely. The name scalar

is used because the product is a scalar quantity. This product is also

called the dot product, since the product is indicated by placing a dot

between the two vectors.

M
FIGURE 12-10
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In the figure the point M is the foot of the perpendicular to the vector A
drawn from the point of B. The vector from to M is called the vector

projection of B on A. The vector projection and A point in the same

direction, since is an acute angle. If 9 exceeds 90, then A and the vector

from to M point oppositely. The scalar projection of B on A is defined

as |B |
cos B. The sign of the scalar projection depends on cos 0. Using

the idea of scalar projection of one vector on another, the dot product may
be interpreted geometrically as

A-B =
|A| |B|cos0

= (length of A) times (the scalar projection of B on A).

We could also say that the dot product of A and B is the length of B times

the scalar projection of A on B.

It follows immediately from the definition of scalar product that

A-B = B-A. (1)

Hence the dot product of two vectors is said to be commutative.

We next establish the distributive law from the scalar multiplication of

vectors. If we let /> and c stand for the scalar projections of B and C on A,

we see (Fig. 12-1 1) that the sum of the scalar projections of B and C on A
is the same as the scalar projection of (B -4- C) on A. Hence

|A|(6 + c)
=

|A|b + |A|c,

and

A (B + C) * A B + A C. (2)

Equation (2) expresses the distributive law for the multiplication of vec-

tors. Since the dot product is commutative [equation (1)], we have also

(B + C) - A = B - A + C - A. (3)

From equations (2) and (3) it maybe seen that the scalar product of two

sums of vectors may be carried out as in multiplying two algebraic ex-

pressions, each of which consists of more than one term. Thus, for

example,

B

Ob c

FIGURE 12-11
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If two vectors are expressed in terms of i, j, and k, the scalar product
can be found in a simple way. Let the vectors A and B be expressed as

A = aii + a2j + a3k,

B = M + 62j + 63k.

To obtain the dot product of A and B, we first determine the dot products

of the unit vectors i, j, and k. We have

l-i-J-J-k-k-i,
i-j-j-k-k-i-O.

Hence we obtain

A B = aibi + 02&2 + a363 . (4)

Equation (4) shows that the dot product is obtained by the simple process

of adding the products of the corresponding coefficients of i, j, and k.

Since cos 90 = and cos =
1, it is evident that the scalar product of

two perpendicular vectors is zero, and the scalar product of two vectors

in the same direction is the product of their lengths. The dot product of a

vector on itself is the square of the length of the vector. That is,

A A =
|A|

2
.

EXAMPLE 1. Determine whether the vectors

A = 3i + 4j
-

8k,

B = 4i - 7j
- 2k

are perpendicular.

Solution. The scalar product is

A - B = 12 - 28 + 16 = 0.

Since this product is zero, the vectors are perpendicular.

EXAMPLE 2. Vectors are drawn from the origin to the points 4(6, 3,2) and

B(- 2, 1 ,2) . Find the angle AOB.

Solution. Indicating OA by A and OB by B, we write

A = 6i - 3j + 2k,

B = -2i + j + 2k.

To find the angle, we substitute in both members of the equation

A - B =
|A| |B| cos 6.

The product in the left member is A B = -12 - 3 + 4 = -11. The lengths

of A and B are |A|
= \/36 + 9 + 4 -

7, |B|
= \/4 + 1 + 4 = 3. Hence

--
jfrfi-T-

6 = cos-1 = 122 (nearest degree).
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EXAMPLE 3. Find the scalar projection and the vector projection of

B = 2i - 3j
- k on A = 3i - 6j + 2k.

Solution. The scalar projection of B on A is |B| cos 0, where is the angle

between the vectors. Using the equation

A B = |A||B|cos0,
we have

Since A B = 6 + 18 - 2 = 22 and ]A|
= V9 + 36 + 4 = 7, it follows that

The scalar projection of B on A is 22 fl'. Since the scalar projection is positive, the

vector projection is in the direction of A. The vector projection is therefore the

product of the scalar projection and a unit vector in the direction of A. This

unit vector is A divided by its length. Hence the vector projection of B on A is

EXERCISE 12-3

Find the dot product of the vectors in each problem 1-4. Find also the cosine

of the angle between the vectors.

1. A = 4i - j + cSk, 2. A = 5i - 3j + 2k,

B = 2i + 2j
- k. B = -i + 7j + 13k.

3. A = lOi + 2j + 1 Ik, 4. A = i + j + 2k,

B = 4i - 8j
- k. B = Si + 4j + k.

In each problem 5 and G find the scalar projection and the vector projection

of B on A.

5. A = i
-

j
-

k, 6. A = 3i + 3j + k,

B = lOi - llj + 2k. B = i
-

2j
- 2k.

7. Find the angle which a diagonal of a cube makes with one of its edges.

8. From a vertex of a cube, a diagonal of a face and a diagonal of, the cube

are drawn. Find the angle thus formed.

The points in problems 9 and 10 are vertices of a triangle. In each determine

the vector from A to B and the vector from A to C. Find the angle between

these vectors. Similarly, find the other interior angles of the triangle.

9. 4(3,4,2), 5(1,7,1), C(-2,3,-5).

10. A(-2,-l,l), (l,0,-2), C(0,-3,l).

11. Let a, /?, and y denote the angles which the vector A = oi + 6j + ck

makes with the positive a>, y-, and z-axes respectively. Using A i, A j, and

A k, find cos a, cos #, and cos 7. The cosines of a, #, and y are called the direc-

tion cosines of the vector A. Show that cos2
a. + cos2

ft + cos2 y = 1.
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12-6 The equation of a plane. We have discovered (Section 11-3) that

a linear equation in one or two variables represents a plane. In Section 11-

4, we stated without proof that a linear equation in three variables also

represents a plane. We shall now prove that the locus of a linear equation,

in one, two, or three variables, is a plane.

Suppose that a point PI(XI,T/I,I) is in a given plane and that a nonzero

vector

N = Ai + Bj + Ck

is perpendicular, or normal, to the plane (Fig. 12-12). A point P(x,y,z)

will lie in the given plane if and only if the vector P tP is perpendicular to

N. Setting the scalar product of these vectors equal to zero, we obtain

the equation

N PJ> =
0, (1)

or

A(x- x,) + B(y - yO + C(z
- *) = 0. (2)

This is the equation of the plane which passes through Pi(x\,y\,z\) and

is perpendicular to the vector N = Ai + B] + Ck. Substituting D for

the constant Ax\_ By\ Czi, we write the equation in the form

Ax + By + Cz + D = 0. (3)

Conversely, any linear equation of the form (3) represents a plane.

Starting with this equation, we can find a point Pi(ari,2/i,i) whose coordi-

nates satisfy it. Then we have

Axi + Byi + Czi + D = 0.

This equation and equation (3) yield, by subtraction,

A(x xi) + B(y 1/1) + C(z 21)
=

0,

which is of the form (2). Hence equation (3) represents a plane per-

pendicular to the vector N = Ai + Bj + Ck.

THEOREM. Any plane can be represented by a linear equation. Con-

versely, the locus of a linear equation is a plane.

FIGURE 12-12
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EXAMPLE I. Write the equation of the plane which contains the point

Pi (4, -3,2) and is perpendicular to the vector N = 2i - 3j + 5k.

Solution. We use the coefficients of i, j, and k as the coefficients of x, ?/, and z

and write the equation

2x - 3// + 5* + D = 0.

For any value of D this equation represents a plane perpendicular to the given

vector. The equation will be satisfied by the coordinates of the given point if

8 + 9 + 10 + D =
0, or D = -27.

The required equation therefore is

2x - 3// + 62 - 27 = 0.

EXAMPLE 2. Find the equation of the plane determined by the points Pi(l,2,6),

P,(4,4,l),and/>3(2,3,f>).

Solution. A vector which is perpendicular to two sides of the triangle is normal

to the plane of the triangle. To find such a vector, we write

PJ\ = 3i + 2j
-

5k,

/VJ
3
= i + j

-
k,

N = Ai + B) + Ok.

The coefficients .1, B, and (
T

are to be found so that N is perpendicular to each

of the other vectors. Thus

N 7V> 2
= 3.1 + 2B - 50 = 0,

N - /V'a = -1 + B - T = 0.

These equations give A = %C and B = 2C. Choosing 0=1, we have

N = 3i 2j 4- k. The plane 3* 2// -f z + /> = is normal to N, and passes

through the given points if 1) 5. Hence we have

3.r - 2// + z - 5 = 0.

EXAMPLE 3. Find the distance d from the point 7^(6,4, 1) to the plane

2x -f 3/y
- 6* - 2 = 0.

FIGURE 12-13
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Solution. Let R be any point of the plane (Fig. 12-13). The scalar projec-

tion of the vector HP on a vector perpendicular to the plane gives the required

distance. This scalar projection is obtained by taking the dot product of RP and

a unit vector normal to the plane. The point (1,0,0) is in the plane, and using

this point for R, we have RP = 5i + 4j k. Either of the vectors

N 2i + 3j
- 6k- =t

?

is a unit vector normal to the plane. Hence

We choose the ambiguous sign + in order to have a positive result. Thus we

get d = 4.

N 2

FIGURE 12-14

EXAMPLE 4. Find the angle 6 between the planes 4x % 2 + 5 = and

x + 2y
- 2z + 3 = 0.

Solution. The angle between two planes is equal to the angle between their

normals (Fig. 12-14). The vectors

w 4i - 8j
- k w i + 2j

- 2k
N!- J

1 N2
= -

are unit vectors normal to the given planes. The dot product yields

cos = N! - N 2
= -tf, and = 112.

The planes intersect, making a pair of angles equal (approximately) to 112, and

a second pair equal to 68. Choosing the smaller angle, we give the angle between

the planes as 68.

EXERCISE 12-4

Write the equation of the plane which satisfies the given conditions in each

problem 1-8.

1. Perpendicular to N = 3i - 2j + 5k and passes through the point (1,1,2).

2. Perpendicular to N = 4i - j
- k and passes through the origin.
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3. Parallel to the plane 2x 3y 4z = 5 and passes through (1,2, 3).

4. Perpendicular to the line segment (4,0,6), (0, 8,2) at its mid-point.

5. Passes through the origin and is perpendicular to the line through (2, 3,4)

and (5,6,0).

6. Passes through the points (0,1,2), (2,0,3), (4,3,0).

7. Passes through the points (2,-2,-l), (-3,4,1), (4,2,3).

8. Passes through (0,0,0), (3,0,0), (1,1,1).

Find the distance from the given point to the given plane in each problem 9-12.

9. 2z- y + 2z + 3 = 0; (0,1,3).

10. 6x + 2y
- 3z + 2 = 0; (2, -4,3).

11. 4x- 2y + 2-2 = 0; (-1,1,2).

12. 3x- 4y- 5z = 0; (5, -1,3).

Find the cosine of the acute angle between each pair of planes in problems 13-16.

13. 2jr + y + * + 3 =
0, 2x - 2y + z - 7 = 0.

14. 2x + // + 2z - 5 =
0, 2x - 3y + Qz + 5 = 0.

15. 3j - 2y + z - 9 =
0, x - 3y

- $z + 4 = 0.

16. j - 8// + 4 - 3 =
0, 4j + 2y - 4z + 3 = 0.

17. Show that the planes

A }* + B,?/ + dz + D, =

.4 2:t + 2/y + r2* + D, =

are perpendicular if and only if

jMj + BA + fA = 0.

IS. Determine the value of C so that the planes 2x 6i/ -f Cz = 5 and

x 3v + 2z = 4 are perpendicular.

19. Use vectors to show that the distance d from Pi(opi,yi,*i) to the plane

Ax + /?// -f Tz + D = is

12-7 The equations of a line. Let L be a line which passes through a

given point Pi(xi,y^z\) and is parallel to a given nonzero vector

If P(x,y,z) is a point on the line, then the vector PiP is parallel to V

(Fig. 12-15). Conversely, if P\P is parallel to V, the point P is on the line

L. Hence P is on L if and only if there is a scalar t such that

or

(x
-

xi)i +(y- 2/i)j + (*
~

zi)k
- AA + Btj + CQn. (1)
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FIGURE 12-15

Equating corresponding coefficients of i, j, and k, we obtain the equations

x - Xi = At, y - y^
= Bt, z- z\ = Ct,

or, transposing,

At, (2)

When is given any real value, equations (2) determine the coordinates

(x,y,z) of a point on the line L. Also there is a value of / corresponding to

any point of the line. Equations (2) are called parametric equations of

the line.

By solving each of the parametric equations for t and equating the equal

values, we get

x - xi y
-

t/i z-z\
B a (3)

These are called the symmetric equations of the line.

The planes which contain a line and are perpendicular to the coordinate

planes are called projecting planes.

Equations (3) represent three projecting planes. This becomes evident

when we write the equations as

x-xi^y-y^ x-xi z-z\ y-yi_z-z\
B B

These equations, each in two variables, represent planes perpendicular re-

spectively to the xy-, xz-, and i/2-planes. These equations represent a

line, and hence the line is the intersection of the planes. Any two of the

equations, of course, determine the line. We notice also that any one of

the equations can be obtained from the other two.

A line in space may be defined by two planes which pass through the
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line. Hence there are infinitely many ways of defining a line, since in-

finitely many planes pass through a line. However, it is usually con-

venient to deal with the projecting planes.

If a line is parallel to a coordinate plane, one of the quantities A, B, and

C in equations (3) is zero, and conversely. In this case, one member of

the equation would have zero in the denominator and could not be used.

If, for example, A = and B and C are not zero, then the line passing

through Pi(xi,i/i,2i) is parallel to the vector V = Bj + Ck. Hence the line

is parallel to the xy-plane and consequently the plane x = Xi contains

the line. If two of X, B, and are zero, say A = B =
0, then the line is

parallel to the z-axis. Hence the line is the intersection of the planes

x = x\ and y =
y\. Thus we see that when a denominator of a member of

equations (3) is zero, the corresponding numerator equated to zero repre-

sents a plane through the line in question.

EXAMPLE 1 . Write the equations of the line through (2, 1,3) which is parallel

to the vector V = -2i + 4j + f)k.

Solution. The equations of the line in the symmetric form (3) are

JT
- 2 ?/ +J = z - 3

-2 4
"

6

These equations in the parametric form (2) are

x = 2 - 2/, ?/
= -

1 + 4<, 2 = 3 + 6f.

EXAMPLE 2. A line passes through the points Pi(2, 4,5), P2(~ 1,3,1). Write

its equations.

Solution. The vector from P2 to P lt

/V>, = 3i - 7j + 4k,

is parallel to the line. Hence we get

x - 2 y + 4 = z - 5

3 -7 4

Had we used the vector PiP instead of P2Pi, the signs would be reversed in all

the denominators.

EXAMPLE 3. Find a symmetric form of the equations

x + y
- * - 7 -

0, x + 5/y + 5a + 5 = 0.

Solution. We multiply the first equation by 5 and add to the second equation

to eliminate z. We subtract the first equation from the second to eliminate x.

This gives the equations

6z + 10y
- 30 ^= and 4y + fa + 12 = 0.
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By solving each of these for y, we obtain

-3z + 15 -32 - 6
If--j

-
> y- 2

--

Combining these equations and dividing by 3, we obtain the symmetric equa-

tions

x - 5
_j/_

2 + 2

5 -32'
EXAMPLE 4. Write the equations of the line passing through the points PI(2,6,4)

andP2(3,-2,4).

Solution. The vector from PI to P2 is

Hence the required line is parallel to the o#-plane. The plane 2 = 4 contains the

line. This plane is perpendicular to two of the coordinate planes. We use the

first two members of equations (3) to get another plane containing the line. Thus

we have the defining equations

,

-__
2 = 4, Sx + y

- 22 = 0.

Notice that we could not use the third member of the symmetric equations because

its denominator would be zero. We did, however, set the numerator of that

member equal to zero to obtain one of the planes.

EXAMPLE 5. Find the equation of the line through (2, 1,3) and parallel to

the planes 2j y + 42 5 = and 3x + y + z 4 = 0.

Solution. Normals to the planes are given by the vectors

Hi = 2i - j + 4k,

N2
= 3i + j + k.

The required line is perpendicular to these vectors. Hence, if V = Ai + Bj + Ck
is parallel to the line, we have

Ni V = 2A - B + 4C =
0,

N2 V = 3A + B + C = 0.

Solving these equations for A and B in terms of C, we get A = C, B = 2C.

Hence V = -Ci + 2Cj + Ck. Taking C =
1, then V = -i + 2j + k. The

equations of the line may therefore be written as

x- 2
_^ y + 1 2-3

-1 2 1

12-8 Direction angles and direction cosines. The angles, a, 0, and

7 which a directed line makes with the positive x-, y-, and 2-axes respec-

tively are called the direction angles of the line. The cosines of the direc-
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tion angles are called the direction cosines of the line. The direction

cosines of a line represented by equations of the form (2) or (3) may be

found by the use of vectors. The vector

V = A\ + Bj + Ck

is parallel to the line. Having chosen one direction along the line as

positive, then one of the vectors V or its negative points in the same direc-

tion as the line. The direction cosines are easily determined by using the

dot product, as in problem 11, Exercise 12-3.

The angles formed by two lines which do not intersect are defined to be

equal to the angles formed by two lines which do intersect and are parallel

to the given lines. Hence vectors can be employed in finding the angles

formed by two lines in space.

EXAMPLE. Assign a positive direction to the line represented by the equa-

tions

j - 1 // + 3 _ z - 5

4
~

-3
~

-2

and find the direction cosines.

Solution. The vectors 4i 3j 2k and 4i + 3j + 2k are parallel to the

line. We select the positive direction of the line upward, so that y is an acute

angle. Then the vector V = 4i -f 3j + 2k points in the positive direction of

the line. Using the dot product, we get

i. V =
|i| |V|cosa,

4 = VlQcosa,
4

COS Of = =
V29

3 2
Similarlv, j V and k V vield cos 3 = and cos y = -^=-

\ 29 \ 29

EXERCISE 12-5

Write a vector which is parallel to the line represented in each problem 1-4.

By setting j, //, and z in turn equal to zero, find the points in which the' line cuts

the coordinate planes.

. x - 6 i/ + 2 z + 3 i y -2 _ z - 3
*

-*
* ~~ ~

3* ** y * ** A & 2
r\

s=
*
~

**
* *3-12 123

In each problem 5-14 write in two ways the equations of the line which passes

through the given point anil is parallel to the given vector.

5. P(4,-3,5); -2i + 3j + 4k. 6. P(0,l f -2); i
-

J + 2k.

7. P(l,l,2); 2i + 3j
- k. 8. P(-2,-2,3); 5i + 4j + k.
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9. P(2,-l,l); 2i + j. 10. P(3,3,3); i + k.

11. P(4,3,2);j + 2k. 12. P(0,0,0);i.

13. P(0,0,0);j. 14. P(0,0,0);k.

Write the equations of the line through the two points in each problem 15-22

15. (1,2,3), (-2,4,0). 16. (0,0,0), (3,4,5).

17. (1,0,2), (0,2,1). 18. (2,4,0), (1,2,8).

19. (2,5,4), (2,4,3). 20. (0,4,3), (0,4,4).

21. (-1,3,4), (3,3,4). 22. (0,0,2), (0,0,4)

Find a symmetric form for each pair of equations in problems 23-26.

23. x - y
- 2* + 1 =

0, 24. x + y
- 2* + 8 =

0,

x - Sy
- 3* + 7 = 0. 2x - y

- 2z + 4 = 0.

25. x + y + z - 9 =
0, 26. x + y

- z + 8 =
0,

2x + y
- i + 3 = 0. 2x - y + 2z + 6 = 0.

27. Find the direction cosines of the lines defined in problems 1-4 of this exer-

cise. In each case select the positive direction of the line so that y is an acute

angle.

Find the cosine of the acute angle formed by each pair of lines in problems 28-31 .

x ~ 1 V + * g -3 x - 1 y+ 1 z -3
9ft

1 2
'

2 -2 1

+ 2 _ z x- 1 _ y
-

1 _ z - 4

6~
~

2' "1 ~T~
"

-2
'

30. x = 3 + *, y = 5 - 8*, z = 2 + 4J;

2 3 + 4t, y = 5 - 2*
f
* = 2 - 4*.

31. x =
J, y = -2J, 2 = 3J;

x =
6*, i/

=
4*, 2 = -2t.

In each problem 32-34 find the equations of the line which pusses through the

given point and is parallel to each of the given planes.

32. (0,0,0); * -y + z = 4,x + y-2z + 3 = Q.

33. (2,1,3); 2x - 3y + 2z - 5, 3* + 2y
- 2* = 7.

34. (-l,5,-5);z-</ =
5,2/ + 2 = 3.



ANSWERS TO ODD-NUMBERED PROBLEMS

EXERCISE 1-1

5. (a) On the x-axis; (b) on the z/-axis.

7. (a) On a line bisecting the first and third quadrants; (b) on a line bisecting

the second and fourth quadrants. 9. (0, 3\/3), 9^3 square units.

EXERCISE 1-2

1 . (a) All real values except 2 and -3; (b) < x < 1
; (c) 3 < x < 4, x > 4.

3. (a) y = 2\/j, z = J*/
2

;
z > 0,

- oo < ?/ < oo (i.e., all real values), (b) y = 5/x,

x =
5///; each variable may take any real value except zero, (c) y dbVs2

9;

x = rtVj/
2
-f 9; |x| > 3 (i.e., the numerical value of x is equal to or greater

than 3), oo < jy < oc.

5. 1, -1,
" - s2 + 1. 7. 4< + 3, 2* + 5, 2t2 + 3.

EXERCISE 1-5

1. (3,2). 3. (2,3), (-2,-3). 5. (1,2), (-1.-2).
7. (0,0), (2,8), (-2,-8)._
9. (fv^iiv'H), (-f\/2,dbiVi4). 11. (3 V5, 2

EXERCISE 2-1

1. AB = 2,AC =
fi, #C = 4, BA = -2, CA = -6, C = -4.

5. 13. 7. 13. 9. 3v
/
2. 11. VrtXlO.VlS. 13. 1, 3%/2,5. 29. (0,~2).

EXERCISE 2-2

1. (a) 1; (b) 0; (c) v/3; (d) -V3; (e) -1. 3. -3. 5. J. 7. .

13. tan ^1 = 5, A = 79; tan B = 8. # = 83; tan C =
J, C = 18.

15. tan ^ =
1, A = 45; tan B =

1, B = 45; C - 90, and has no tangent.

17. i or -3.

EXERCISE 2-3

1. (a) (1,-1); (b) (2,3); (c) (2,6); (d) (if).
3. (f,3), the segments bisect each other. 5. (-1,4), (3,2).

7. (,2), (J,4). 9. (4,1), the same for each median.

H. (,), (-, -I). 13. r = 2. 15. r = 3.

EXERCISE 3-1

1. y = -3s -f 6; m = -3, 6 = 6. 3. y = 2x - f ;
m =

2, 6 = -f .

5. ?/
= -i* - 2; m = -i, 6 = -2. 7. y = Jx; m -

$, 6 - 0.

9. y - -fx + J; m = -f, 6 =J. 11. y = T\x - A; m -
-ft, 6 = -ft-

13. m =
4, a = 3, 6 = -12. 15. m - -1, a = -4, 6 = -4.

17. m -
f, a = 4, 6 - -3. 19. m = -|, a = 11, 6 = Y.

21. m - -J, a = -f 6 = -2. 23. m - -f, a =
4, 6 = .

25. T/
= 3x - 4. 27. y = -4x -f 5. 29. 2* - 3y = 6.

31. ?/
= -6. 33. 7x + 2y + 16 = 0. 35. y = 0.

195
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EXERCISE 3-1 cont'd.

37. 2x + 30 = 6. 39. 3z - 40 = 12. 41. x + y + 2 = 0.

43. 3z + 40 = 2. 45. 21z + 220 = 77. 47. 33* + 40 + 22 = 0.

49. 2s - y - 5. 51. 2z - 30 + 4 = 0. 53. z + 20 + 15 = 0.

55. y = 3. 57. Sx + 30 0. 59. 6x + + 37 = 0.

61. 6z + 70 = 11. 63. 2z + y
- 2 = 0. 65. x = 3.

67. 8* - 270 = 58. 69. x = 0. 71. 2x - y + 1 - 0.

75. 2x - 30 =
5, 3z + 20 = 14. 77. Ix + 50

- 41 =
0, 5z - 70 + 13 = 0.

79. Sx - y
- 19 = 0, x + Sy + 22 = 0. 81. y = 1, x = - 1.

83. 9z + y - 63 =
0, x - 90

- 7 = 0.

85. (a) x - 4y - 1 = 0, 3z - y = 3, 2x + Zy = 24.

(b) 4* - 5y = 4, x + 7y = 23, 5x + 2y = 27; (tf , f).

(c) 3x - 2t/
-

3, x + 3y = 15, 4x + y - 18; (ff , ).

(d) 4* + y-21,* + 3y- 11, 3x - 2y - 10; (ff, )

EXERCISE 3-2

1. . 3. 3\/2. 5. -
^^- 7. 3.

9. 5. 11. 7x - 4?/
= D. 13. a + 2y = 2fe. 15. 4x - ay = 4a.

17. x - 20 + 7 + k(bx - 7y
-

3) = 0. 19. All pass through (0,4).

21. All have the slope
-

. 23. All pass through (0,3).

25. All pass through the point of intersection of 4x 7y 7 = and y = 0.

27. The equations in order, omitting problems 22 and 25, are: 4x + 3// 12 = 0,

y = 2x - 6, 9s + 2y = 27, x -f y = 3, 7x + 3z/
= 21, 3x + 820 - 9 = 0. No

line of the family of problem 22 or of problem 25 passes through (3,0). Why?
29. 9x - 320 + 19 = 0. 31. 34x - 55 = 0. 33. 24x -f 240 -f 5 = 0.

35. 20x + 250 + 62 0, 7* - 70
- 16 =

0, 27x + 180 -f 46 = 0.

37. x - =
5, 3x + 30 + 1 = 0.

EXERCISE 4-1

1. 3z' + 20' - 0. 3. /2 - 6*'.

5. z/2 + 0'
2 = 4. 7. z'0'

= 11.

9. (1,2), x/2 + 0" - 9. 11. (3,2), z'0'
= 14.

13. (-3, -1), z" + 20
/2 - 9. 15. (1,3), 0'

2 + 4z' - 0.

17. (-2, -
2), 0'

2 + 10z' - 0.

EXERCISE 4-2

1. 0' + 2 = 0. 3. z'2 - 0'
2 = 8. 5. 3z'2 + 0'

2 = 2.

7. /2 -4z' = 0. 9.45. 11. 22i.

EXERCISE 4-3

I. 3z' - 40' = 0. 3. S = arc tan J, 50' + 6 - 0.

5. 6 = 45, 0'
2 -

40'
- 4z' - 4 = 0. Then a translation yields 0"

2 - 4z" 0.

7. 6 = arc tan f, z/a + 40'
2 + 4z' - 160' + 16 = 0. Then a translation gives

z"2 + 40"
2 = 4.

II. (x + 3)
2 =

0, two coincident lines.

13. (z + i
-

iV3t)(z + \ + 4\/3i*)
=

0, no graph.



ANSWERS TO ODD-NUMBERED PROBLEMS 197

EXERCISE 5-1

1. F(l,0); ends of latus rectum (l,-2), (1,2); directrix x = -1.

3. F(0,-f); ends of latus rectum (-5,-f), (5,-f); directrix y =
f.

5. F(~f,0); ends of latus rectum ( f, f), ( i,f); directrix 4z = 3.

7. t/
2 = 12*. 9. z/

2 = 24x. 11. x* = -I2y.

13. 3*2 + 16z/
- 0. 15. y = -a:. 17. **

EXERCISE 5-2

1. F(0,4);
3. F(d=5,0); r(13,0); B(0,12); (-5,

5. F(2V6,0); V(7,0); B(0,5);
7. F(0,V2l); r(O f 5);B(2,0);
9. F(0,

- = -7
'54

+
30

ly '

100^75
' Z1

'3fl^9

23- ?7 + T? = ' 25 - 91 -4 an(i 94 -6 million miles.M 16

F^XERCISE 5-3

1. r(4,0); F(5,0); ?
;

_
|
. 0,

|
+

|
0.

3. F(0,3); F(0. Vl3);
|; |

-
\
=

0,
|
+

\
= 0.

5. r(2,0); F(5.0); 21
; |
+ -^=

= 0,
? -

-|=
- 0.

7. r(0.6); FCO.i 6v7i2); 12; j + i/
= 0, x - ;/

= 0.

** ?/
'
- i 11 tf T'

- 1 11
x*

-(/t -
1 l"i

*' - -v
*
-

19. jjj-9-1. "-21-4- 1 ' "'T'T- 1 - 15
'T6 20

~ L

EXERCISE 5-4

1. (x
-

2)
1 + (y + 6)' - 25. 3. x> + (//

-
4)' = 16.

5. (x
-

4)
s +(y + 3)'

= 25. 7. (y
-

4)' = 12(j + 1).

9. (x + f)*
=

4(t/
-

2). 11. (y-3)5 = 12(z
-

2). 13. x* =
16(j/

-
2).

15 '

(J
~

5)
'

+ (j/ 4)
'

= L Center (5|4); F '

( '4) ' F(10 '4); F'

(2 '4) ' F(8 '4);

B'(5,0), B(5,8).

17.
(y
t 3)t + (g

"^
4)

'

= L Center (4, -3); F'(4,-3-V3), F(4 >

O ^

F'(4,-4), F(4,-2); B'(4
- V2.-3), B(4 + V2.-3).

19
(?/
-

1)' + (x
-

5)' m j 21
(x + 1)' + (y + 1)' = L

9 4 io y

23.
(z
~

3)> -
f
= I- <?(3,0); V'(-l,0), V(7,0); F'(-2,0), F(8,0).
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EXERCISE 5-4 cont'd.

(y
-

3)
2
_ (s

-
3)

2

_ (y 2)
2
_

|
-- 1. 29.

? g
- 1.

37. Ellipse. 39. Hyperbola. 41. Hyperbola. 43. Parabola.

45. x =
t/ 1, x = 2y. Hence the graph is two intersecting lines.

49. The greatest value is Vk

EXERCISE 6-1

1.0. 3. -5. 5. 4x3
. 7. 2.

9. 3s2
. 11. 6* -4. 13. -tor1

. 15. -I/a;
2

.

17. -12ar8 + lOar3
. 19. -4/x6

.

21. A# = 2z; 2x - y = 1. 23. Dty = -1/z2
;
x + y + 2 - 0.

25. Dxy = 2x - 4; y = -4. 27. A,i/ = 4s3 -
8z; 16* - y = 32.

29. Dxy = -4x-6 + 4x'; y = 2.

EXERCISE 6-2

I. (0,2), maximum point. The slope is positive when x < and negative when

x > 0.

3. (2, -4) minimum point. The slope is negative when x < 2 and positive

when x > 2.

5. (3,10), maximum point. The slope is positive when x < 3 and negative

when x > 3.

7. (0,0), neither a maximum nor a minimum point. The slope is negative at

all points except the origin.

9. The slope is zero at (1,J) and is positive at all other points.

II. ( 1,1), maximum point; (0,0), minimum point. The slope is positive when

x < 1 and when x > 0. The slope is negative when 1 < x < 0.

13. (0,4), maximum point; (2,0), minimum point. The slope is positive when

x < and when x > 2. The slope is negative when < x < 2.

15. (0,0), (1,-1). 17. (0,1), (1,-B).

19. (0,1), (I,*), (2,1). 21. (-1.A), (!,-).

EXERCISE 6-3

1. A square 100 yds. on a side. 3. 2000 sq. yd.

5 10 - 2V7 = l 57
.

n
^ approximatelyt 7> 6

/

by 6
'

by 3'.
o

250 000
9. Radius 2 in., height 4 in. 11. <~ cu. in.

EXERCISE 7-1

1. Period ir, amplitude 1. 3. Period 6^r, amplitude 1.

5. Period ITT. 7. Period TT. 9. Period JTT. il. Period 4, amplitude 2.
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EXERCISE 8-1

1. (x
-

2)
2 + (y + 3)

2 = 25. 3. y
2 - 6x - 4y + 13 = 0.

5. x2 + i/
2 = 25. 7. x2 + i/'

- 8x + 2?/ + 9 = 0.

9. i/
2 - 2y + 16x + 65 = 0. 11. 3x2 -

y
2 + lOx - 25 = 0.

13. 9*' - 16y
2 = 144.

15. Equation of path: (1
- e2)x

2 + t/
2 - 2kx + A;

2 = 0. When < e < 1,

the coefficients of x2 and y
1 are of like sign and unequal and the path is an ellipse.

When e > 1, the coefficients of x1 and y
1 are of unlike signs and the path is a hy-

perbola. When e = 1, the equation becomes y
1 = 2k(x Jfc) and the path is a

parabola. When y =
0, we have (1

- e2)x
2 - 2kx + fc

2 =
0, and x = Jb/(l + e),

k/ (1 e). Hence the vertices are at (fc/1 + e,0) and (&/1 e,0). The center,

midway between the vertices, is (k/\ e2,0).

17. x2 + i/
2 - 5x - t/

= 0. 19. t/
= 2x2 - 3x.

EXERCISE 8-2

We assume that the data in the remaining problems of Chapter 8 justify the

retention of three significant figures in the answers.

1. y = -0.718x + 8.71. 3. y = O.lOOx + 10.0. 5. AT = 1380* + 6300.

EXERCISE 8-3

1. y = 0.121x3 3. t = 0.259s0488 . 5. p = lOSir 1
-*.

EXERCISE 8-4

1. y = 2.00 10 - l 3. y = 9.91 log x + 3.03.

5. T = 99.5 - 10- o98" 7. V = 3.87 log P - 0.828.

EXERCISE 9-1

1. Other coordinates of (3,60): (-3,240), (-3, -120), (3, -300). Other

coordinates of (6, -30): (6,330), (-6,150), (-6, -210). Other coordinates

of (2,180): (-2,0), (2, -180), (-2,360). Other coordinates of (-3, -225):

(3, -45), (3,315), (-3,135). The point (0,10) is the pole. The pole may be

represented by (0,0), where B is any angle.

3. (a) and (b) On a circle of radius 4 and center at the pole; (c) on a line through

the origin with an inclination of 45; (d) on a vertical line through the origin.

EXERCISE 9-2

1. (0,4). 3. (7,0). 5. (0,8). 7. (-3^3,3).
9. C-9,0). 11. (3,0). 13. (1,180). 15. (2,45).

17. (4,150). 19. (5,143), nearest degree. 21. (13,247).

23. p sin B = -4. 25. tan B = -3.

27. p -: Q , p . v 29. p
2 sin B cos B = a2

.* A cos B + B sin B
*

31. p
2 cos 26 = a2

. 33. p
2 = a2 sin 26.

35. y = 0. 37. x2 + ?/

2 - 2x - 2y = 0.

39. x2 + if
- 8x = 0. 41. x = 6.

43. x2 -
y
2 - a2

. 45. y
2 + 6x - 9 - 0.

47. 3x2 -
2/
2 + 8x + 4 = 0. 49. x - 2y + 5 = 0.
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EXERCISE 9-4

7. Center (4,0), radius 4. 9. Center (5,270), radius 5.

11. (a) p
2 - 8p cos e + 12 - 0; (b) p

2 - 8p sin + 12 = 0;

(c) p - 4 cos - 0.

EXERCISE 9-6

I. (1,60), (1,300). 3. (3^2,45), (3^2,315).

5. (a,90), (a,270). 7. (2,0). 9. (f,60), (|,300).

II. (1,0), (-$,233). Arc sin (-f) 233, to the nearest degree.

13. (1,60). 15. (1,60), (1,300).

17. (3,180). 19. (2,60), (2,300), (-1,180).

EXERCISE 10-1

1. 3x + y = 6. 3. xy = 6. 5. *2 + 9^ = 9.

7. 9*' + 16z/
2 - 144. 9. x2 + y

2 - 2x. 11. x* + 4</
= 4.

13. x2 -
i/
2 = 1. 15 z2 + zt/

- 1 - 0.

17. 2x2 -
2xy + y*

= 1. 19. ?/
2 - *2 - 4.

EXERCISE 10-2

1. x = 40 V2<, y = 40 \/2/ - 16J2
;
x* - 200x + 200z/ = 0, The greatest height

is 50 feet, and the ball strikes the ground 100 feet away.
ax1

3. x = Vot, y = J0/
2

; y = %r-2
- In 2 seconds the projectile falls 60 feet and

travels 2v* feet horizontally.

EXERCISE 12-1

1. 11. 3. V102.

5. AB - -6i - 6j, BC = -6j - 6k, CA = 6i + 12j + 6k. The lengths are

6\/2, 6\/2, 6\/6.

7. AB - i + 2j + 2k, 5C - -3i - 3j, (M - 2i + j
- 2k, The lengths are

3, 3V2, 3.

6i + 3j
- 6k 2i j

- 3k
W. ~ -

- -
1JL. =

9 VT4
13. 4i + fj, to the mid-point; 3i - j + 4k and 5i + j + k, to the trisection

points.

15. Center (-2,1, -3), radius Vl4. 17. i + 2j + 2k.
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EXERCISE 12-3

1. -2, -*. 3. 13, tft. 5. tfV5, V(i - J
-

k).

7. 55. 9. 64, 90, 26.

EXERCISE 12-4

1. 3x - 2y + 5 - 11 = 0. 3 2x - 3y - 4* = 8.

5. 3* + 9y
- 40 - 0. 7. 2x + 3y

- 4* - 2 - 0.

9. f. 11. f\/2l. 13 *\/6. 15. 0.

EXERCISE 12-5

1. 2i + j + 3k; (O f -5,-12), (10,0,3), (8, -1,0).

3. 81 - J + 2k; (0,1,2), (3,0,4), (-3,2,0).



INDEX

Abscissa, 1

Addition of ordinates, 75, 105

Aids in graphing, 6, 130

Amplitude, 100

Analytic proofs, 28

Angle
between two lines, 24

between two planes, 180

between two vectors, 176

vectorial, 120

Angles, direction, 184

Applications of conies, 74

Asymptotes, 13, 71

Axes

coordinate, 1, 151

of ellipse, 65

of hyperbola, 70

rotation of, 49

translation of, 45

x, y, and z in space, 151

Axis

of parabola, 59

polar, 120

Best-fitting line, 110

Cardioid, 131

Center, 65, 70

Circle

equations of, 64, 76, 127, 142

through three points, 108

involute of, 149

Cissoid of Diocles, 150

Components of a vector, 1 70

Cone

right circular, 56

elliptic, 165

Conies, 56

applications of, 75

degenerate, 56, 58

identification of, 79

in polar coordinates, 128

simplified equations of, 53, 57

standard forms of equations of, 75,

Conic section, 56

Conjugate axis, 70

Constant, 3

Constant e
} the, 103

Coordinates

polar, 120

polar to rectangular, 122

rectangular, 1

rectangular to polar, 121

space, 151

Cosines, direction, 184

Curve fitting, 109

Curves

exponential, 103

inverse trigonometric, 101

logarithmic, 104

trigonometric, 98

Cycloid, 147

curtate, 148

prolate, 148

Cylinder, 153

Cylindrical surface, 1 53

Decreasing function, 89

Degenerate conic, 56, 58

Dependent variable, 4

Derivatives, 85

formulas for, 86

used in graphing, 89

Descartes, 1

Directed line, 17

Directed line segment, 17

Direction angles, 184

Direction cosines, 184

Directrix of a parabola, 60

Distance

between two points, 18, 19

from a line to a point, 37, 38

from a plane to a point, 179, 181

Double-valued, 4

Dot product, 174

Eccentricity, 68, 73

76 Element of a cylinder, 154

202
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Ellipse, 64-68

in polar coordinates, 128

parametric equations of, 142

Ellipsoid, 159

Elliptic cone, 165

Elliptic paraboloid, 163

Empirical equation, 109

Equation

empirical, 109

of a given curve, 107

graph of, 5, 124

locus of, 5, 152

Equation of the first degree

general form of, 31

intercept form of, 33

normal form of, 39

point-slope form of, 33

slope-intercept form of, 32

in three variables, 155

two-point form of, 33

Equation of second degree

general form of, 52, 56

simplified forms of, 53, 57

standard forms of, 75, 76

in three variables, 156

Equations of a line, 181

in polar coordinates. 126, 127

Equilateral hyperbola, 73

Excluded values, 133

Exponential curve, 103

Exponential equation, 103

Exponential formula, 117

Extent of graph, 8

Extreme value, 100

Family of lines, 40

through intersection of two lines, 41

Foci

of ellipse, 65

of hyperbola, 70

Focus of a parabola, 60

Focus-directrix property, 59, 128

Four-leaved rose, 133

Function, 3

decreasing, 89

increasing, 89

periodic, 98

transcendental, 98

General linear equation, 31, 155

Graph, 5

extent of, 8

of equation in factored form, 10

of parametric equations, 143

of polar coordinate equations, 124

of sum of two functions, 75, 105

Graphing, aids in, 6, 130

Graphs, intersections of, 11, 138

Horizontal segment, 18

Hyperbola, 70-73

in polar coordinates, 128

Hyperbolic paraboloid, 164

Hyperboloid
of one sheet, 160

of two sheets, 161

Hypocycloid of four cusps, 150

Identification of a conic, 79

Inclination of a line, 21

Increasing function, 89

Independent variable, 4

Intercept form of equation, 33

Intercepts, 6

Intersections of graphs, 11, 138

Invariant, 80

Inverse trigonometric functions, 101

Involute of a circle, 149

Latus rectum, 60, 67, 70

Least squares, method of, 110

Lemniscate, 135

Limagon, 134

Line

best-fitting, 110

directed, 17

inclination of, 21

slope of, 21

Linear equation, 11, 155

Line segment
formula for length, 18, 19

formulas for division of, 28

formulas for mid-point, 27

Locus of an equation, 5, 31, 152

Logarithm, definition of, 104

Logarithmic curve, 104

Logarithmic formula, 117
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Logarithmic paper, 114

Logarithmic spiral, 136

Major axis, 65

Maximum of a function, 92

Maximum point, 92

Method of least squares, 1 10

Mid-point formulas, 27

Minimum of a function, 92

Minimum point, 92

Minor axis, 65

Nonlinear fits, 113

Octant, 151

Ordinate, 1

Ordinates, addition of, 78, 105

Origin, 1, 120

Parabola, 58-63

in polar coordinates, 128

Parameter, 40, 141

Parametric equations, 141

of a circle, 142

of a cycloid, 147

of an ellipse, 142

of a line, 182

of p?th of a projectile, 146

Path of a projectile, 146

Period of a function, 98

Periodic function, 98

Plane, equation of, 178

Point-slope form, 33

Polar axis, 120

Polar coordinates, 120

of conies, 128

of lines, 126, 127

to rectangular coordinates, 122

Pole, 120

Power formula, 114

Projectile, path of, 146

Projecting plane, 180

Prolate cycloid, 148

Proofs, analytic, 28

Quadrant, 1

Quadric surface, 156, 157

Radius vector, 120

Range, 4

Reciprocal spiral, 136

Rectangular coordinates, 1

to polar coordinates, 121

Rectangular hyperbola, 73

Residual of a point, 110

Rose curves, 133

Rotation of axes, 49

Scalar, 167

product, 174

projection, 175

Second degree equation, 52, 156

Semilogarithmic paper, 117

Simplified equations of conies, 51, 53,

57

Single-valued, 4

Slant segment, 18

Slope

of a curve, 84

of a line, 21

formula for, 23

Slope-intercept form, 32

Space coordinates, 151

Spirals, 136

Standard forms of equations, 75, 76

Surface

cylindrical, 154

quadric, 156

of revolution, 160

Symmetric equations of a line, 182

Symmetry, 7

tests for, 8, 132

System of lines, 41

Tangent to a curve, 84

Tangent lines at the origin, 131

Traces, 155

Transcendental functions, 98

Transformation of coordinates, 45

Translation of axes, 45

Transverse axis, 70

Trigonometric curves, 98

Two-point form, 33

Unit vector, 170
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Variable, 3 Vectors (cont'd)

dependent, 4 in space, 172

independent, 4 projection of, 175

Vectorial angle, 121 scalar product of two, 174

Vectors, 167 sum of, 168

components of, 170, 172 Vertex, 59, 65, 70

difference of, 168 Vertical segment, 18

direction of, 167

magnitude of, 167 Witch of Agnesi, 149

in a plane, 169














